Artificial Intelligence for Port State Control and Case Study for Hong-Kong

Professor Shuaian (Hans) Wang Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University

Acknowledgments

- This research is sponsored by Hong Kong Policy Innovation and Coordination Office and Hong Kong Research Grants Council.
- Coauthors: Jiannong Cao, Kjetil Fagerholt, Gilbert Laporte, Haoyu (Mok) Mo, Chuansheng Peng, Xiaobo Qu, Defeng Sun, Xuecheng Tian, Ran (Angel) Yan, Dong Yang, Lu Zhen
- Comments from the following practitioners are highly appreciated: Captain Z. Ni, Mr. Chiu-sum Mok, Senior Surveyor Mr Z.H. Huang, Senior Surveyor Mr Meng Gong, Dr. Stephen Li, Captain Jian Feng Zhou, Captain Chang Zheng Chen, Captain Hongpeng Liu, Captain Zhang, and Mr Tim T.Y. Wang

1. Introduction

Objectives

- Reduce maritime risks
- Protect marine environment
- Guarantee good working and

living conditions for the crew.

maritime

transportation

maritime safety

Port state Control

"second line of defense"

"last safety net"

Flag state

"first line of defense",

unable to perform well

International rules and recommendations

SOLAS:

Sets minimal safety standards in the construction, equipment and operation of merchant ships.

MARPOL:

Aims to minimize pollution of the oceans and seas, including dumping, oil and air pollution.

STCW:

Sets minimum qualification standards for masters, officers and watch personnel on seagoing merchant ships and large yachts.

Ships cannot comply with

the conventions.

Example of inspection records of the Port of HK in the database

Figure 2. Example of inspection records of the Port of HK in the database

Code	Deficiency item	Code	Deficiency item	Code	Deficiency item
D1	Certificates and documentation	D7	Fire safety	D13	Propulsion and auxiliary machinery
D2	Structural condition	D8	Alarms	D14	Pollution prevention
D3	Water/Weathertight condition	D9	Working and living conditions	D15	ISM
D4	Emergency system	D10	Safety of navigation	D18	Labour conditions
D5	Radio communication	D11	Life saving appliances	D99	Other
D6	Cargo operations including equipment	D12	Dangerous goods		

INSPECTIONS SEARCH RESULTS

Found 2133 elements in 85 page(s). Pages from 2126 to 2133

Legend:
- initial inspection - follow-up inspection

Туре	e Date	Place	IMO number	Ship Name	Callsign	MMSI	Flag	Deficiencies (□: recorded/ ∎: for checking)	Detention	Ship Risk Profile at the time of inspection
	04.01.2017	Kong Kong (Hong Kong, China)	9279214	BIENDONG MARINER	3WKL	574260000	Vietnam	8	no	High Risk Ship
•	04.01.2017	Kong Kong (Hong Kong, China)	9279214	BIENDONG MARINER	3WKL	574260000	Vietnam	12	no	
	03.01.2017	Kong Kong (Hong) Kong, China)	8415873	XIANG SHENG	9LU2451	667001648	Sierra Leone	41	yes	High Risk Ship
	03.01.2017	Kong Kong (Hong Kong, China)	8611752	SHENG HO	BNJG	416357000	Taiwan, Province of China	11	no	High Risk Ship
	03.01.2017	🚰 Hong Kong (Hong Kong, China)	9316373	STAR RIVER	3FTA3	372701000	Panama	3	no	Standard Risk Ship
	03.01.2017	Kong (Hong Kong (Hong) Kong, China)	9159842	PRINCESS OF LUCK	5BGF3	209735000	Cyprus	2	no	High Risk Ship
•	03.01.2017	🚰 Hong Kong (Hong Kong, China)	7215161	METROPOLIS	6YRN7	339300690	Jamaica	11	no	
•	03.01.2017	Kong (Hong Kong (Hong Kong, China)	9159842	PRINCESS OF LUCK	5BGF3	209735000	Cyprus	1	no	

₩ ◀

Start new search

MEMORANDUM OF UNDERSTANDING ON PORT STATE CONTROL IN THE ASIA-PACIFIC REGION

			_								
					Inspectio	n data					
	Dat	te			Authority		Port		Туре	Detentio	on
	31.12.	2019		😽 H	ong Kong, China		Hong Kon	g	initial	no	
					Ship d	lata					
	Ship Name	IMO number	MMSI	Callsign	Classification Society		Flag	Туре	Date keel laid	Deadweight	Tonnage
	GRAND MIDAS	9044138	667001506	9LU2309	Overseas Marine Certifica Services	ation	Sierra Leone	Container ship	1992-04-23		3986
					Company						
		Nam			IMO number	Residence		Registered	Phone	Fax	Email
	V	AST OCEAN	global LTD		6033544	Sevchelle	5	Sevchelles			
					Ship deficie	encies					
Code	Nature									Ground fo	or deten
0109	SAFETY C	of Navigat	ION (Lights	, shapes, so	ound-signals)					I	No
)711() FIRE SAF	ETY (Fire fig	hting equip	ment and a	appliances)					I	No
)310	5 WATER/V	VEATHERTIC	GHT CONDI	TIONS (Cov	vers (hatchway-, portable	-, tarpaulins,	etc.))			I	No
013	5 SAFETY C	F NAVIGAT	ION (Estabi	lishment o	f working language onbo	oard)				I	No
0127	7 SAFETY C	SAFETY OF NAVIGATION (Voyage or passage plan) No						No			
)5118					GMDSS equipment)					1	No
9204					ORKING CONDITIONS (Sa	afe means of	access)				No
					CUMENTS (Oil record bo						No

Certificates

Code	Nature	Issuing Authority/RO	Date of issue	Date of expire	Surveying Authority/RO	Date of survey	Surveyed Port
501	Cargo Ship Safety Construction	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
502	Cargo Ship Safety Equipment	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
503	Cargo Ship Safety Radio	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
505	International Oil Pollution Prevention (IOPP)	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
506	International Air Pollution Prevention	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
507	International Sewage Pollution Prevention	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
508	Load Line	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
509	Document of Compliance	New United International Marine Services Ltd. (250)	20.05.2019	19.05.2020			
510	Safety Management Certificate	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
512	Minimum Safe Manning Document	Sierra Leone (SL)	18.10.2019				
528	International Ballast Water Management	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			
529	International Anti-Fouling System	Overseas Marine Certification Services (216)	27.10.2019				
532	International Energy Efficiency (IEE)	Overseas Marine Certification Services (216)	27.10.2019				
533	Maritime Labour Certificate	Overseas Marine Certification Services (216)	27.10.2019	26.03.2020			

Example of deficiencies detected by the PSC authority

Figure 3. Example of deficiencies detected by the PSC authority

Source: Tokyo MoU, 2017; Tokyo MoU, 2018ba

2. Current Ship Selection Scheme in PSC Inspection

Regional Memorandum of Understanding (MoU)

- Nine current regional MoUs: Abuja MoU, Vina del Mar MoU, Black Sea MoU, Caribbean MoU, Indian Ocean MoU, Mediterranean MoU, Paris MoU (established in 1982), Tokyo MoU, and Riyadh MoU
- The United States Coast Guard (USCG) maintains the tenth inspection regime.

Tokyo MOU

- Tokyo MOU: a New Inspection Regime (NIR) for selection of ships has been introduced from 1 January 2014.
- The concept of the NIR of the Tokyo MOU is similar to that of the Paris MOU introduced since 2011.

	NIR							Ship risk profile	Time window (months)		
CL	sin Di	ole Dr	ofilo			nin ool	action achou	~ ~		LRS	9 to 18
J	пркі	5K FI	ome	<u>אר</u>) 51	np sei	ection scher	ne		SRS	5 to 8
, ,	Ship Ris	sk Profil	e sheet					Т	hree risk types of ships	HRS	2 to 4
	Parame	eters	High Risk Sh (When sum of points > Criteria	weighting	ile Standard Risk Ship (SRS) Criteria	Low Risk Ship (LRS) Criteria	Ship Risk Profile		ligh risk ship (HRS): Ships with th reighting points >=4.	e sum o	of the
	Type of	-	Chemical tanker, Gas Carrier, Oil tanker, Bulk carrier, Passenger ship	2		-		Low risk ship (LRS): Ships meet all the crite Standard risk ship (SRS): Ships that are neit HRS nor LRS.			
-	Age of Flag	Ship BGW-list ¹⁾ VIMSAS ²⁾	All types > 12y Black	1		- White Yes				_	
	Recognized Organization	RO of Tokyo MOU ³⁾ Performance ⁴⁾	Low Very Low	-	Neither	Yes High	 Ship generic factors 		Inspection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
	Company per	formance ⁵⁾	Low Very Low	2	LRS nor HRS	High		į	HRS		
	Deficiencies	Number of deficiencies recorded in each inspection within previous 36 months	How many inspections were there which recorded over 5 deficiencies?	No. of inspections which recorded over 5 deficiencies	пкз	All inspections have 5 or less deficiencies (at least one inspection within previous 36 months)	Ship inspection		PI PI PI	I	
	Detentions	Number of Detention within previous 36 months	3 or more detentions	1		No detention	historical factors		LRS PI		PI
		(Toł	kyo MoU, 2	2014)			-	Date o inspec		1	.4

Parameter	Calculation method	States from best to worst
Ship flag performance	Established annually by taking its ships' inspection and detention conditions over the preceding three calendar years into account. Black-grey-white ship flag lists are published in an MoU's annual report.	White Grey Black
Ship recognized organization (RO) performance	Established annually considering their ships' inspection and detention history over the preceding three calendar years. The RO performance list is published in an MoU's annual report.	High Medium Low Very low
Ship company performance	Established based on the ships detention and deficiency history calculated daily on the basis of a running 36-month period	High Medium Low Very low

NIR

- **Priority I++** (ships with overriding factors)
 - Have the highest priority to be inspected
- Priority I+ (ships with no inspection record in Tokyo MoU)
 - Should be inspected
- **Priority I** (ships out of the time windows)
 - Should be inspected
- **Priority II** (ships within the time windows)
 - Can be inspected
- **Priority None** (ships not entering the time windows)
 - Should not be inspected unless with overriding factors

Tokyo MoU Annual Report 2019

- In 2019, 31,372 inspections, involving 17,647 individual ships, were carried out on ships registered under 97 flags
- Out of 31,372 inspections, there were 18,461 inspections where ships were found with deficiencies.
- Since the total number of individual ships operating in the region was estimated at 25,741, the inspection rate in the region was approximately 69% in 2019
- In 2019, 983 ships were detained due to serious deficiencies having been found onboard. The detention rate of ships inspected was 3.13%.

Hong Kong PSC

- From 2015 to 2017, there were a total of 10,239 individual ships visiting the port of Hong Kong and 1,324 of them were actually inspected
- The inspection rate of individual ships at Hong Kong over 2017–2019 was 13%, which is slightly less than the target rate of 15% by Tokyo MoU.
- The detention rate at Hong Kong is higher than the average of Tokyo MoU.

Motivation

- The current NIR ship selection rule is elementary. State-of-the-art development in AI should be taken advantage of.
- The PSC records are publicly available
 - https://apcis.tmou.org/public/

🚔 APCIS	×	+			-		\times
$\leftarrow \rightarrow C$		ttps://apcis. tmou.org /public/	\$	Q Search		\bigtriangledown	≡
	МЕМО	RANDUM OF UNDERSTANDING ON P	ORT STATE CONTROL IN THE ASIA	PACIFIC REGION			
	TOKYO MOU	The Asia Pacific Computerized Information S Understanding on Port State Control in the A Maritime Information and Advisory Services Federation. The APCIS is aimed to collect Port State Cont provide information exchange by PSC data w This public access to the APCIS database prov mode. The Tokyo MOU (its member Authorities, the harm resulting from the use of information oc timeliness. The data obtained from this site should not b publications without prior permission by the If you any eaving the mission by the If you any ewith terms of the disclaimer pro	sis Pacific Region (Tokyo MOU), is develop (APMIAS) under supervision of the Minist rol (PSC) inspection data from the Tokyo N tikhin the region. vides publication of actual PSC data stored excretariat and the APMIAS) will not be h contained in the database, or of any relianc be used for any commercial purposes, repri- Tokyo MOU. ess to the site or site particulars please co	ed and hosted by the Asia Pacific y of Transport of the Russian IOU member Authorities and to in the database in a real-time eld liable for any loss, damage, or e on its accuracy, completeness or induced in any other sites or any tact Tokyo MOU Secretariat or			
			enter the solution	nse prease reave uns page.			
		PSC/	Hosted by FSC Directorate Income Russia				-

3. Artificial Intelligence (AI) for Predicting Overall Ship Conditions

Motivation

- Priority I++ (ships with overriding factors)
 - Have the highest priority to be inspected
- **Priority I+** (ships with no inspection record in Tokyo MoU)
 - Should be inspected
- **Priority I** (ships out of the time windows)
 - Should be inspected
- Priority II (ships within the time windows)
 - Can be inspected
- **Priority None** (ships not entering the time windows)
 - Should not be inspected unless with overriding factors
- With limited PSC manpower, limited time spent at port by ship, and possibility of a sudden arrival of a huge number of foreign-flagged ships, not all ships in Priorities I++, I+, and I will be inspected.
- In short term, AI can provide decision support for PSC authority regarding i) among ships of Priority I, which one has the worst condition? ii) among ships of Priority II, which one has the worst condition?
- In long term, AI-based inspection regimes can be adopted at an MoU

3.1 Predict number of deficiencies

3.1.1 Predict number of deficiencies without considering domain knowledge

Tree Augmented Naive Bayes (TAN) Classifier Model

Variable	Unit	Туре	Node name	States
Number of deficiencies		discrete	deficiency_no	S1:0to2, S2:3to6, S3:7+
Ship age	year	discrete	age	S1:0to7, S2:8to12, S3:13+
Ship gross tonnage	100 cubic feet	continuous	GT	S1:0to11228, S2:11229to40053, S3:40054+
Number of previous detention times		discrete	pre_detention	S1:zero, S2:one, S3:2+, S4:none
Last inspection time	month	continuous	last_inspection	S1:0to5.5, S2:5.6to9.6, S3:9.7+, S4:none
Number of deficiencies in last inspection		discrete	last_deficiency_no	S1:zero, S2:1to3, S3:4+, S4:none
Number of changing flag times		discrete	change_flag	S1:zero, S2:one, S3:2+, S4:none
Ship type		nominal data	type	S1:bulk_carrier, S2: container_ship, S3:general_cargo/multipurpose, S4:passenger_ship, S5:tanker, S6:other
Ship flag		ordinal data	flag	S1:white, S2:grey, S3:black, S4:not_listed
Ship company		ordinal data	company	S1:high, S2:medium, S3:low, S4:very_low
Ship recognized organization		ordinal data	RO	S1:high, S2:medium, S3:low, S4:not_listed

TAN classifier (old parameters in SRP)

Ship generic factors

ship age

ship company

ship type

ship recognized

➤ ship flag

organization

Ship inspection historical factors

- number of previous detention times
- number of deficiencies in last
 - inspection

How to validate the effectiveness of the AI model?

- Impractical Validation 0:
 - On a past day, ships ABC are actually inspected, but the AI model recommends ships ABD. Then, compare the number of deficiencies of ship C with the number of deficiencies of D.
 - Challenge: we never know the number of deficiencies of the ships that are not inspected.

How to validate the effectiveness of the AI model?

- Validation 1: A PSC authority implements the AI model for one year
 - Compare the average number of deficiencies per inspection before and after implementing the AI model
 - However, things may change with time (ships are more compliant)
 - A DiD approach can address it
- Validation 2: Each day, a PSC authority selects e.g., 3 ships (e.g., ABC), the AI model recommends 3 ships (e.g., ABD), all the four ships are inspected and the number of deficiencies of ship C is compared with the number of deficiencies of D.

How to validate the effectiveness of the AI model?

- Practical Validation 3:
 - We collected 300 historical inspection records
 - We used 250 records to train the AI model and the remaining 50 to validate
 - Suppose these 50 ships arrive at Hong Kong on the same day
 - For each i=1,2,3,...,50
 - Suppose the Marine Department can only inspect i ships
 - We use the Tokyo MoU rule to select i ships, and calculate their total number of deficiencies
 - The AI model recommends i ships, and we calculate their total number of deficiencies
 - Compare the above two numbers

SRP Inspection List

Priority I+ (ships with no inspection before)

- a. High risk ship
- b. Standard risk ship
- c. Low risk ship

*Ships in the same SRP are randomly selected

Priority I (ships out of the time window) Descending order in ship risk index

*Ships in the same risk index are randomly selected

Priority II (ships within the time window) Descending order in ship risk index

*Ships in the same risk index are randomly selected

Priority None (ships do not enter the time window) Descending order in ship risk index

*Ships in the same risk index are randomly selected

Table 1: Calculation of ship risk index

Ship	Time window	State of time window					
risk	(months)	out of time window	within time window	time window			
profile				closed			
LRS	9 to 18	$RI = \frac{L_i}{9}$	$RI = \frac{L_i - 9}{18 - 9}$	$RI = \frac{L_i}{18}$			
SRS	5 to 8	$RI = \frac{L_i}{5}$	$RI = \frac{L_i - 5}{8 - 5}$	$RI = \frac{L_i}{8}$			
HRS	2 to 4	$RI = \frac{L_i}{2}$	$RI = \frac{L_i - 2}{4 - 2}$	$RI = \frac{L_i}{4}$			

Numerical experiments

The average performance of TAN classifier (with new parameters) is slightly better than the TAN classifier (with old parameters), as the determinant parameters: ship company performance,

deficiency number in last PSC inspection, and ship age are also considered.

%

3.1.2 Predict number of deficiencies considering domain knowledge

Basic idea: Given all other conditions equal, a ship with worse flag/company/RO performance should be predicted to have a larger number of deficiencies.

• Extreme Gradient Boosting (XGBoost) Model

Input: Ship static properties, ship dynamic properties, and historical inspection condition in TMoU **Output**: The total number of deficiencies of a ship

Increase in predicted deficiency number of consecutive states

State change	Flag performance	State change	RO performance	Company performance
White->Grey	0.8030	High->Medium	0.2530	0.5312
Grey->Black	0.2236	Medium->Low	0 (no such data)	0.7787
		Low->Very low	1	1.4919

Model Performance: Mean absolute error (MAE) is 2.372, mean squared error (MSE) is 12.470.

33

Yan R., Wang S., Cao J., Sun D., 2021. Shipping domain knowledge informed prediction and optimization in port state control. Transportation Research Part B: Methodological 149, 52-78.

3.1.3 Explainable AI model for predicting number of deficiencies

Explainable Gradient Boosting Regression Tree (GBRT) model

• The same seven features as the NIR are used

Feature importance on the predicted deficiency number

The while-box surrogate model for explanation	The	while-b	ox sur	rogate	model	for ex	planation
---	-----	---------	--------	--------	-------	--------	-----------

$$\hat{y}_{i}^{T} = 4.112735 + \begin{cases} x_{1}^{T,i} \times (-0.4454) + (1 - x_{1}^{T,i}) \times 2.3722 + x_{2}^{T,i} \times 0.8501 + (1 - x_{2}^{T,i}) \times (-0.4540) + \\ x_{3}^{T,i} \times 3.1336 + (1 - x_{3}^{T,i}) \times (-0.1342) + x_{5}^{T,i} \times 1.7802 + (1 - x_{5}^{T,i}) \times (-0.4434) + \\ x_{7}^{T,i} \times 2.1108 + (1 - x_{7}^{T,i}) \times (-0.0307) + \left[-0.8871 + 1.6953 \times \sqrt{x_{6}^{T}} \right] \end{cases}$$

Binary feature1_ship_type_concerned (x_1^T) 2_ship_age_12+ (x_2^T) 3_flag_black (x_3^T) 4_RO_low (x_4^T) 5_company_low (x_5^T) 7_detention_last_36 (x_7^T)

Model Performance: Mean absolute error (MAE) is 2.791, mean squared error (MSE) is 18.483.

3.2 Predict probability of detention
Balanced Random Forest (BRF) model considering data imbalance

Input: Ship static properties, ship dynamic properties, and historical inspection condition in TMoU

Output: The detention risk (expressed by a probability) of a ship

Model Performance: 85% of the detained ships can be accurately identified; 61% of the ships predicted to be detained are actually detained

37

3.3. Al for Predicting Ship Conditions

Models: Ship deficiency number predicted by BN model; ship detention predicted by BRF model

Input: Ship static properties, ship dynamic properties, and historical inspection condition in TMoU **Output:** Ship overall risk considering ship deficiency number (60% weight) and detention probability (40% weight) https://sites.google.com/site/wangshuaian/researchinterest/ai-for-psc-at-hong-kong

AI for PSC at Hong Kong

Return

This system downloads the information of ships at the Port of Hong Kong and applies an artificial intelligence (AI) model developed by The Hong Kong Polytechnic to predict the conditions (number of deficiencies and probability of detention) of foreign-flagged ships, so that the Marine Department of Hong Kong can select th worst conditions for Port State Control (PSC) inspection.

Info about the project

The table below is updated at around 8:55am (Hong Kong time) every day. For more frequent updates every 15 min, download the up-to-date prediction results (,

Candida	te ships fo	or PSC in	spection a	at Hong K	ong : She	et1									
2021-09-2	25 08:55:00) ships at p	ort for insp	ection											
Note:	Column C) is a weigh	nted sum of	Column N	1 and Colu	mn N									
Data sour	ce:	MD (Mari	ine Departr	nent)											
		TMoU (Tokyo MoU website)													
		AI (Artifi	cial Intellig	ence mode	l develope	d by the Po	olyU team)								
MD	TMoU	MD	MD	MD	MD	MD	MD	TMoU	TMoU	TMoU	TMoU	AI	AI	AI	AI
Call Sign	IMO number	Vessel Name	Ship Type	Flag	Last port of call	Name of agent	Current location	Ship risk profile	Inspectio n Priority			deficienc	Predicted detention probabili ty		Recommended inspection n rank b AI
9M2385	9872236	MTT SAPA	CONTAINE	Malaysia	NANSHA,	CMA CGM	KWAICHUN	SRS	No inspe	ction red	cord				
3FYH5	9140592	RUN FAR	LIQUIFIE	Panama	SHENZHEN	S5 ASIA	SOUTH LA	HRS	Out of t	2020/01/	2020/03/	1.31	2.44	1.76	
3WVF7	9352688	HAIAN GA	CONTAINE	Vietnam	KEELUNG	HYALINE	SHIPPING	HRS	Out of t	2019/12/	2020/02/	1.3	0.6	1.02	
9V2196	9385025	WAN HAI	CONTAINE	Singapor	SHEKOU,	HYALINE	KWAICHUN	SRS	Out of t	2019/12/	2020/05/	0.6	0.58	0.59	
9HA5044	9450612	CMA CGM	CONTAINE	Malta	SHEKOU,	CMA CGM	KWAICHUN	SRS	Out of t	2019/09/	2020/02/	0.54	0.51	0.53	
D5WR2	9864540	YM CAPAC	CONTAINE	Liberia	OPEN SEA	YANG MIN	KWAICHUN	SRS	Out of t	2020/11/	2021/04/	0.52	0.16	0.38	
9V2196	9385025	HYUNDAI	CONTAINE	Singapor	SHEKOU,	HMM (HON	G KONG) I	SRS	Out of t	2019/12/	2020/05/	0.54	0.11	0.37	

Condidate shine for DCC increation at Llang Keng , Chest

Yan R., Wang S., Peng C., 20/1. Snip selection in port state control: Status and perspectives. Maritime Policy & Management, DOI: 10.1080/03088839.2021.1889067.

AI for PSC at Hong Kong

<u>Return</u>

This system downloads the information of ships at the Port of Hong Kong and applies an artificial intelligence (AI) model developed by The Hong Kong Polytechnic to predict the conditions (number of deficiencies and probability of detention) of foreign-flagged ships, so that the Marine Department of Hong Kong can select th worst conditions for Port State Control (PSC) inspection.

Info about the project

The table below is updated at around 8:55am (Hong Kong time) every day. For more frequent updates every 15 min, download the up-to-date prediction results (.)

Candidat	te ships fo	or PSC in	spection a	at Hong K	ong : She	et1									
2021-09-2	5 08:55:00	ships at p	ort for insp	ection											
Note:	Column O	is a weigh	nted sum of	Column N	/I and Colu	mn N									
Data sourc		<u> </u>	ine Departr												
TMoU (Tokyo MoU website)															
		· · · · ·	•		el develope	d by the P	olyU team)								
MD	TMoU	MD	MD	MD	MD	MD	MD	TMoU	TMoU	TMoU	TMoU	AI	AI	AI	AI
Call Sign	IMO number	Vessel Name	Ship Type	Flag	Last port of call	Name of agent	Current location	Ship risk profile	Inspectio n Priority		Date of inspectio n time window	deficienc	Predicted detention probabili ty	risk	Recomm ended inspectio n rank by AI
9M2385	9872236	MTT SAPA	CONTAINE	Malaysia	NANSHA,	CMA CGM	KWAICHUN	SRS	No inspe	ection red	cord				0
3FYH5	9140592	RUN FAR	LIQUIFIE	Panama	SHENZHEN	S5 ASIA	SOUTH LA	HRS	Out of t	t 2020/01/	2020/03/	1.31	2.44	1.76	1
3WVF7	9352688	HAIAN GA	CONTAINE	Vietnam	KEELUNG	HYALINE	SHIPPING	HRS	Out of t	t 2019/12/	2020/02/	1.3	0.6	1.02	2
9V2196	9385025	WAN HAI	CONTAINE	Singapor	SHEKOU,	HYALINE	KWAICHUN	SRS	Out of t	t 2019/12/	2020/05/	0.6	0.58	0.59	3
9HA5044	9450612	CMA CGM	CONTAINE	Malta	SHEKOU,	CMA CGM	KWAICHUN	SRS	Out of t	t 2019/09/	2020/02/	0.54	0.51	0.53	4
D5WR2	9864540	YM CAPAC	CONTAINE	Liberia	OPEN SEA	YANG MIN	KWAICHUN	SRS	Out of t	t 2020/11/	2021/04/	0.52	0.16	0.38	5
9V2196	9385025	HYUNDAI	CONTAINE	Singapor	SHEKOU,	HMM (HON	IG KONG) I	SRS	Out of t	t 2019/12/	2020/05/	0.54	0.11	0.37	6

4. Al for Predicting Ship Detailed Conditions

Motivation

- Predicting the detailed conditions (e.g., chance of deficiencies of each code) can help
 - PSC officer to conduct more efficient inspection
 - Ship management companies to carry out effective maintenance plans, reducing costs and avoiding deficiencies and detention

4.1. Predicting Each Deficiency Code

Ship specific risk prediction

Basic idea: Prediction of the number of deficiencies <u>under each deficiency code in</u> <u>PSC</u>.

Code	Deficiency item	Code	Deficiency item	Code	Deficiency item
D1	Certificates and documentation	D7	Fire safety	D13	Propulsion and auxiliary machinery
D2	Structural condition	D8	Alarms	D14	Pollution prevention
D3	Water/Weathertight condition	D9	Working and living conditions	D15	ISM
D4	Emergency system	D10	Safety of navigation	D18	Labour conditions
D5	Radio communication	D11	Life saving appliances	D99	Other
D6	Cargo operations including equipment	D12	Dangerous goods		

4.2. Association between Different Deficiencies

Association rule mining in ship deficiency items

Basic idea: a) identify the deficiency items that are <u>frequently detected together</u> in one inspection; b) mine <u>association rules</u> from the inspection records

Model: association rule mining based on a-priori algorithm

Input: deficiency items identified in PSC inspection records at the HK port from January 1 2018 to June 2018

Output: frequent item sets and association rules of deficiency items

Frequent item sets: sets of deficiency items that are often detected in on inspection

		Large 2-	Support	Large 2-	Support	Large 2-	Support
Large 1-intemset	Support	intemset		intemset		intemset	
{D7 - Fire safety}	0.55	$\{D7, D10\}$	0.28	$\{D1, D7\}$	0.17	{D3, D9}	0.15
{D10 - Safety of navigation}	0.45	$\{D7, D11\}\$ $\{D7, D9\}$	0.24 0.23	{D3, D10} {D9, D11}	0.17 0.17	{D3, D14} {D1, D14}	0.13 0.11
{D11 - Life saving appliances}	0.40	$\{D10, D11\}$	0.23	$\{DJ, DII\}$	0.17	$\{D1, D14\}$ $\{D4, D11\}$	0.11
{D9 - Working and living conditions}	0.39	{D7, D14} {D9, D10}	0.19 0.19	{D1, D11} {D3, D11}	0.17 0.16	{D9, D14} {D1, D9}	$\begin{array}{c} 0.10\\ 0.10\end{array}$
{D3 - Water/Weathertight condition}	0.33	$\{D3, D10\}$	0.19	$\{D3, D11\}\$	0.16	$\{D1, D3\}$	0.10
{D14 - Pollution prevention}	0.30	{D10, D14}	0.18				
{D1 - Certificates and documentation}	0.29	Large 3-intemset	Support	Large 3-intemset	Support	Large 3-intemset	Support
{D5 - Radio communication}	0.15			-		-	
{D4 - Emergency system}	0.14	$\{D7, D10, D11\}$	0.14	$\{D10, D11, D14\}$	0.12	$\{D1, D7, D11\}$	0.10
{D8 – Alarms}	0.11	$\{D7, D9, D10\}$	0.13	$\{D3, D10, D11\}$	0.11	$\{D1, D10, D14\}$	0.10
{D13 - Propulsion and auxiliary machinery}	0.10	$\{D7, D10, D14\}\$ $\{D1, D7, D10\}$	0.13 0.12	{D7, D9, D11} {D1, D10, D11}	0.11 0.11	{D3, D7, D11} {D3, D7, D10}	0.10 0.10
		{D7, D11, D14}	0.12				

Yan R., Zhuge D., Wang S., 2021. Development of two highly-ecient and innovative inspection schemes for PSC inspection. Asia-Pacic Journal of Operational Research 38(3), 2040022.

Rule NO.	Left-hand side	Right-hand side	Confidence	Lift	Rule NO.	Left-hand side	Right-hand side	Confidence	Lift
1	D1, D14	D10	0.91	2.03	12	D7, D14	D10	0.66	1.49
2	D11, D14	D10	0.77	1.72	13	D7, D14	D11	0.65	1.61
3	D11, D14	D7	0.77	1.40	14	D1, D10	D11	0.64	1.58
4	D4	D11	0.74	1.83	15	D1, D11	D10	0.64	1.43
5	D1, D10	D7	0.74	1.34	16	D3, D10	D11	0.63	1.55
6	D1, D7	D10	0.73	1.62	17	D10, D11	D14	0.61	2.02
7	D10, D11	D7	0.72	1.30	18	D1, D7	D11	0.61	1.50
8	D10, D14	D7	0.72	1.28	19	D7, D11	D10	0.61	1.35
9	D10, D14	D11	0.70	1.73	20	D1, D10	D14	0.60	2.00
10	D9, D10	D7	0.70	1.26	21	D3, D7	D10	0.60	1.35
11	D3, D11	D10	0.68	1.52					

Association rules derived from frequent item sets

5. Analysis of PSC inspection data before and after COVID-19

Comparison between the average level from 2017 (or 2018) to 2019 and the level in 2020 in PSC inspection

Indicator	MoU	Tokyo MoU	Abuja MoU	Black Sea MoU	Caribbean MoU	
Number of	Average of 2017 to 2019	42,129	2,409	5,455	897	
	2020	25,282	2,128	5,722	261	
inspections	2020 vs. average of 2017 to 2019	-39.99%	-11.66%	4.90%	-70.89%	
Average	Average of 2017 to 2019	2.821	0.296	4.800	\	
number of	2020	2.222	0.553	3.238	/	
deficiencies	2020 vs. average of 2017 to 2019	-21.24%	86.79%	-32.55%	\	
Detention	Average of 2017 to 2019	0.023	0.007	0.048	0.014	
	2020	0.020	0.004	0.042	0.015	
rate	2020 vs. average of 2017 to 2019	-13.76%	-41.26%	-12.22%	13.36%	
Indicator	MoU	Indian MoU	Mediterranean	Paris MoU	Riyadh MoU	
maicator	MOC		MoU	Fails MOU		
Number of	Average of 2017 (or 2018) to 2019	7,707	5,311	17,935	3,162	
	2020	6,001	3,204	13,152	683	
inspections	2020 vs. average of 2017 (or 2018) to 2019	-22.13%	-39.67%	-26.67%	-78.40%	
Average	Average of 2017 (or 2018) to 2019	2.817	2.182	2.231	/	
number of	2020	2.762	1.895	2.116	\	
deficiencies	2020 vs. average of 2017 (or 2018) to 2019	-1.96%	-13.19%	-5.14%	/	
Detertion	Average of 2017 (or 2018) to 2019	0.031	0.026	0.033	0.013	
Detention rate	2020	0.036	0.014	0.028	0.020	
Tate	2020 vs. average of 2017 (or 2018) to 2019	15.93%	-46.68%	-15.86%	58.04%	

Yan R., Mo H., Guo X., Wang S., 2021. Is port state control in uenced by COVID-19? Evidence from inspection data. Submitted to Transport Policy, under first round revision (major revisions).

Comparison between the average level from 2017 (or 2018) to 2019 and the level in 2020 in PSC inspection

- The total number of inspections conducted in 2020 decreases remarkably compared to the average level from 2017 (or 2018) to 2019 in most MoUs by 12% to 78% as expected.
- The average number of deficiencies identified per inspection also decreases by 2% to 33% in most MoUs except Abuja MoU.
- The probability of detention per inspection is also reduced in 2020 in most MoUs by 12% to 47%.

Thank you!

Shuaian (Hans) Wang wangshuaian@gmail.com