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Abstract

This study models two ports, serving the same hinterland, competing strategically using both pricing 
and capacity investment. Both ports are profit maximizers, and port expansions are lumpy, indivisible 
and irreversible. The decision making process of the two ports is analyzed using a two-stage game. In 
the first stage, two ports compete with each other on capacity expansion. In the second stage, they 
follow Bertrand competition with differentiated products conditional on realized port capacities. 
Within this formulation, we show the existence of unique Nash equilibrium in the pricing sub game, 
and the change of the equilibrium price with operation cost, market demand determinants and capacity 
sizes using comparative statics. In capacity investment game, we identified the pure strategy Nash 
equilibriums for different scenarios characterized by the incremental benefit of expansion and the 
annual capital cost of investment. Through both analytical study and numerical simulation, we show 
that the capacity expansion at any port will decrease the equilibrium prices at both ports, thus 
beneficial to the port users. Smaller port with more elastic demand and lower operation and 
investment cost is more likely to expand in an increasing market. Capacity expansion may result in 
lower total profit of the two ports, which is analogous to a Prisoner's Dilemma.  

Keywords: Lumpy Capacity Investment, Pricing, Port Competition, Prisoners' Dilemma 

1. Introduction

Container ports serving the common hinterland compete actively for global carriers. Due to the 
importance of container port activity to the local economy and the huge capital cost involved in port 
development and operation, the outcome of such competition not only has significant impact on the 
related private business, but also on the public sectors. Therefore, research on how ports can maintain 
their competitive edge and how this may affect the public and private sectors is of great importance.  

Hong Kong is one of the leading container ports in the world, due to its unique position linking the 
fast economic development of mainland China to the outside world. However, in the past decade, its 
market share has been challenged by the container port development in Shenzhen, which not only 
generated huge capacity in a short period, but also enjoys many advantages, including lower operating 
costs and proximity to the hinterland. This can clearly be seen from figure 1, the container port 
throughputs from 1991 to 2008. It demonstrates that the throughput of Shenzhen increased from 
merely 51,000 TEUs to 21.4 million TEUs. This corresponds to an increase in market share from less 
than 1% to 47% for Shenzhen port, while that of Hong Kong decreased from 99% to 53%. 
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Figure 1: Container port throughputs of Hong Kong and Shenzhen port from 1991 to 2008 
Source: Hong Kong Port Development Council, Shenzhen port information center, and UNCTAD 

To maintain its competitive edge, Hong Kong Port can take many different strategies, which can be 
generally divided into two categories, short-term measures and long-term ones. Short-term measures
include reducing price, increasing service quality, expediting import/export documentation processes, 
and other strategies that can reduce the user cost incurred when using the port. The long-term 
strategies include capacity expansion, which could improve container loading/unloading efficiency 
and reduce the vessel turn-around-time.  While these measures all contribute to the attractiveness of 
a port, the competitative outcome is hard to predict when the two ports are competing strategically.    

The purpose of this paper is to analyze the possible outcomes of port competition, taking port of Hong 
Kong and Shenzhen as an example. It models two ports, serving the same hinterland, competing 
strategically using both pricing and capacity investment. Both ports are profit maximizers, and port 
expansions are in lumpy, indivisible and irreversible. We use a two-stage model to analyze the 
decision making process. In the first stage, two ports compete with each other on capacity expansion. 
In the second stage, they follow Bertrand competition with differentiated products conditional on 
realized port capacities. 

A literature review in capacity expansion and pricing reveals that there are many different research 
areas on this topic, from specific study in port, to general economics, game theory analysis, and 
operations research.  

• In port study, most of the previous research on optimal port capacity and pricing is for single ports. 
For example, Devanney and Tan (1975) used dynamic programming to analyze optimal pricing 
and timing for capacity expansion in a monopoly port. Allahviranloo and Afandizadeh (2008) 
studied optimal investment on port development through minimizing the net present value of the 
total transportation cost, facility cost, dredging cost, operation cost, and benefit from the foreign 
shipping line at the national level. Literature on strategic port capacity investment and pricing is 
scarce.  

• As to the general economics, Chenery (1952) studied the optimal capacity investment for 
exogenous demand increase over time, with economies of scale in plant size. Manne (1961, 1967) 
and Bean et al. (1992) analyzed capacity expansion with probabilistic growth, location and time. 
Abel and Eberly (1996) investigated capacity investment with reversibility issue. Starrett (1978) 



307

discussed optimal timing and size of the firm with depreciable capacity and increasing demand, 
from the perspective of welfare maximization. More recently, Demichelis and Tarola (2006) 
studied capacity expansion and dynamic monopoly pricing.  

• With respect to game theory, Gilbert and Harris (1984) studied the competition between Nash 
competitors in indivisible and irreversible capacity investment. In their model, output is set equal 
to the capacity. Therefore, price and marginal cost are not an issue. Besanko and Doraszelski 
(2004) used dynamic programming method to study the capacity expansion in competitive market, 
and concluded that the capacity reversibility is a key determinant in firm size distribution in 
industry. Tabuchi (1994) developed a Hotelling model of spatial duopoly on two-dimensional 
space using two stage games. Firms select location in the first stage, and compete with each other 
using price at different location in the second stage. Some other relevant literature includes, but is 
not limited to, Gilbert and Lieberman (1987), Hay and Liu (1998) and Aguerrevere (2003). 

• In operations research, Anupindi and Jiang (2008) discussed a duopoly model for production 
decision with capacity investment under demand uncertainty, competing in both price and 
quantity. Hall and Porteus (2000) developed a dynamic model in which firms compete by 
investing in capacity that affects the customer service level and consequently, the market share of 
each firm. Price is exogenous, and it has no effect on customer's preference. Liu et al. (2007) 
extend their work by incorporating a general demand form and further extend the game 
competition model to an infinite-horizon setting. Acemoglu et al. (2006) studied the capacity 
investment for service providers of a large-scale communication network and price competition, 
which is similar to our problem. However, in their research, cost of investment is continuous and 
proportional to the magnitude of the capacity. While in our problem, we consider lumpy capacity 
investment for port competition, i.e., each port will decide whether to invest or not, instead of the 
magnitude of the capacity expansion. 

Compared with the existing literature, this paper has two unique properties. First, it considers two 
measures – capacity expansion and pricing – in an integrated framework of port competition. This is 
increasingly important because, facing an increasing market demand, port with large capacity can 
enjoy cost advantages from economy of scale, being more competitive in attracting global carriers and 
more likely to be successful in future competition. Secondly, it is the economics in port operation, 
rather than the port capacity constrain, that creates the needs for port expansion. Capacity is not 
binding. When port demand is higher than its capacity, a port can handle this with some extra cost, 
which implies a congestion cost. Therefore, it is the reduced congestion cost and possible revenue 
from the lower charge that made the expansion beneficial.  

Next section presents model basics. Section 3 investigates the competition game between the two 
ports, with the strategic pricing in Section 3.1 and port expansion decision in Section 3.2. Section 4 
provides a numerical analysis of competition between Hong Kong and Shenzhen container ports. A 
summary of the paper and the findings is in section 5. 

2. Model Basics 

This section presents the basic framework for the two-stage pricing – capacity expansion game. First, 
we adopt the Bertrand price competition with differentiated products (Baye and Kovenock, 2009). 
The base demand ( x ) for cargo import and export services to and from the hinterland is assumed 
inelastic to the port price. The two ports serving this area have different initial market share k, where 
the index k (k=i or j) indicates individual port, and i+ j=1. The two ports are perfect substitutes, and 
demand for one port decreases with its own price k, and increases with the price at the other port 

l,(l=i, j; l k) i.e.,  

jjiiijii ppxppx ββα +−=),( ,  and       (1) 

iijjjjij ppxppx ββα +−=),(        (2) 
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Secondly, we assume each port has its own operational cost function Vk(xk, Ck), with a positive 
marginal cost that increases with the throughput and decreases with capacity. This property enables 
the analysis for the benefits in capacity expansion - the reduced marginal operation cost. To simplify 
the mathematic derivation, we used a more specific functional form, Vk(xk, Ck)=f(Ck)x2, assuming 
fk(C)>0 and fk’(C)<0. The capacity of the port is not binding, reflecting in practice that a port can 
always handle more than its designed capacity with some additional cost. For numerical examples, we 
used fk(Ck)= k/Ck, where k is a positive constant. Larger k means larger average marginal operational 
costs for a given capacity size. 
 
Finally, we describe the two-stage game for strategic pricing and capacity expansion based on the real 
world decision-making process, as depicted in Figure 2. At the beginning of stage 1, each port decides 
whether to expand its capacity, knowing the capacity expansion behavior of the competitor and 
anticipating the pricing strategy of the two ports after this period. Each port can only add a fixed 
capacity at a time, and the incremental capacity is the same in two ports. Capacity, once added, is not 
removable. Then in stage 2, having observed the realized capacities at two ports, each port sets a price 
to maximize its profit within that period, conditional on the pricing strategy of the competitor. 
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Figure 2: Illustration of the two-stage game 
 

To analyze this decision process, we start from stage 2, where each port set its best price in response 
to the price of the competitor, and the available capacities at both ports. Then in stage 1, each port 
determines its best strategy in capacity development. At this stage, if a port chooses to develop, the 
new capacity will be 1

kC ; otherwise, it will be 0
kC . Therefore, in the next section, we first present 

price competition in stage 2, followed by the capacity investment game in stage 1. 
 
3. Capacity Expansion and Pricing Game 
 
This section presents the game theory analysis for strategic decision making in capacity expansion 
and pricing. Following backward induction, we show first the pricing subgame in stage two, then the 
capacity expansion game in stage one. In price subgame, to begin with, we show the Nash equilibrium 
prices of the two ports for existing capacities. Following that, we present the static analysis of the 
equilibrium profit and price change with important parameters. In capacity expansion game, we 
analyze the pure strategy Nash equilibriums for capacity expansion. 
 
3.1.  Pricing Subgame 
 
As introduced in the previous section, we adopt the Bertrand competition with differentiated products 
to model the strategic pricing behavior in the second stage.  Under this specification, there exists a 
unique Bertrand equilibrium (Cheng, 1985), which states that port equilibrium price always exceeds 
its marginal cost, and two ports can have different prices and positive profits. We first characterize the 
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mutual best response function of each port and show the equilibrium price. To link the pricing 
strategy in this stage with the capacity expansion outcomes in the first stage and other demand 
parameters, we apply comparative static analysis on equilibrium price and profit with respect to the 
concerned parameters.  Assuming each port chooses the best price to maximize its profit based on 
the existing port capacity, i.e.,  

),()(),(=),,(max 2
jikkkjikkkjik

kp
ppxCfppxpCpp −Π     (3) 

(the second order condition 2

2 ),,(

k

kjik

p
Cpp

∂
Π∂

= )(22 2 Cfkk ββ −− <0), then the price satisfying the 

first order condition 

),()(2=
),(

jikkk
k

jik
k ppxCf

ppx
p

β
−             (4) 

maximizes the profit for port k. This is also the best response to the price of the other port. This first 
order condition can also be expressed in the elasticity term, *

kε− =1 +2fk(Ck) k, where *
kε <0 is the 

demand elasticity of port k at the optimal point. The right hand side of (4) is the marginal cost of port 
k, which is increasing in xk due to congestion.  
For each port, the mutual best response function can be obtained by substituting the corresponding 
demand function into its first order condition, and solving its own price pk in terms of the price of the 
other port, pl :  

pk(pl)= )](22[
)](21[)](21[

kkkk

kkkkllkkk

Cf
CfxpCf

ββ
βαββ

+
+++ .     (5) 

Using the elasticity term, (5) can also be written as pk(pl)= )(
)1( *

*

xp kll
kk

k αβ
εβ
ε +
−

. Replacing 

)1( *

*

−kk

k

εβ
ε

 with *
kϕ , it can be further simplified as 

pk(pl) = )(* xp kllk αβϕ +           (6) 

This can be seen in figure 3, which illustrates the best response pricing strategy for each port. 
According to Cheng (1985), there will be a Nash equilibrium price pair (pi

*, pj
*) at the intersection of 

these two best response curves for the given capacity level of each port.     
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Figure 3: Mutual optimal price response functions for the two ports 

 
3.1.1. Comparative Statics Analysis for Equilibrium Price and Profit 
 
The purpose of comparative statics analysis is to exam the changes in equilibrium price, throughput, 
and profit with respect to the changes in the important parameters, such as the capacity, demand, and 
price sensitivity. The results from this analysis can be summarized as follows: Here we give a 
summary of the results.  
 
(1) The equilibrium price (throughput) of one port increases with all the parameters that increase the 

demand of the port ( x , k, l), decreases with the parameters that decreases its demand ( l, k).  
(2) Capacity expansion in either port will decrease the equilibrium price. It will increase its own 

throughput, and decrease the throughput of the competitor.  
(3) Port expansion decreases competitor’s profit.  
(4) Port expansion can have positive gain if 0)(2)(21 >−+ lllkkk CfCf ββ . Since the change of 

marginal cost w.r.t. own price is kkk
k

k Cf
p

MC β)(2−=
∂
∂ , the above condition can be written as 

1<
∂
∂−

∂
∂

l

l

k

k

p
MC

p
MC . That is, if the difference in the change of marginal cost with respect to price 

change between port k and l is less than one, port k can increase its profit through expansion.   
 
The Appendix contains the detailed mathematical derivations for the change of equilibrium price pk

* 
and quantity *

kx w.r.t. the change in demand parameters and capacity, as well as the change in 
equilibrium profit w.r.t. capacity change. 
 
To summarize, capacity expansion can increase its throughput at the expense of the other port and 
decrease prices at both ports. This can reduce the profit at the non-expansion port. However, the profit 
at the expansion port may decrease or increase, depending on the relative sensitivity of marginal cost 
w.r.t. prices at two ports. For one unit decrease in price from capacity expansion, if the increase in 
marginal cost between the expansion port and the other port is less than one, port expansion will 
increase its profit.  
 
The properties derived in this section have practical implications for optimal pricing strategy under 
competition. First, both ports could charge a higher price to cover the congestion cost when the 
market is good. Second, for larger port with higher existing market share, the optimal price could be 
higher. If demand is sensitive to this price, it is not optimal to charge higher price, because the user 
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will shift to the other port.   

Although capacity expansion can reduce congestion, it may not necessarily increase its profit.  
However, capacity expansion of one port will definitely reduce the profit of the other. Therefore, to 
make port expansion decision, it is necessary to consider the behavior in capacity expansion, in 
addition to the pricing of the competitor.    

3.2.  Capacity Expansion Game 

This section explores the strategic investment behavior of the competing ports. In this game, each port 
decides whether to invest in capacity expansion, knowing that the other port is making the same 
decision. Denoting the equilibrium price, throughput, profit and annual capital cost in stage 2 for port 
k as ),(*

jik CCp , ),(*
jik CCx , ),(*

jik CCΠ , and Ik, where Ci, Cj are the capacities for port i and port 

j respectively, for port i, facing the capacity of the other port jC , its decision problem is:  

1=

*

}1,0{
1),(max

iCiCijii
iCiCiC

ICC ⋅−Π
∈

                                (7) 

.1)),,((),(),(max= 1=

***

}1,0{ iCiCiijiiijiijii
iCiCiC

ICCCxVCCxCCp ⋅−−
∈

If ),(),(< 0*1*
jiijiii CCCCI Π−Π , i.e., for the given capacity at port j, the gain from capacity 

expansion can offset the capital cost in that period, then the port should expand. Let  

),(),(=)( 0*1**
jiijiiji CCCCC Π−ΠΔΠ       (8) 

),(),(=)( 0*1**
jijjijij CCCCC Π−ΠΔΠ       (9) 

(8) and (9) are the gain in port expansion for given capacity of the competitor. Ports decide whether to 
expand by comparing these with the annual capital cost. The decisions are analyzed using a normal 
form game, such as the one in Table 1, which contains the corresponding net profits for the two ports. 
The letter Y and N stand for two possible development strategies – Y for expand, N for not expand. To 
see the decision-making process, we first investigate a special simpler case where the two ports are 
identical.   

Table 1: Net Profits at Equilibrium price for Different Capacity Investment Decisions 
j:N j:Y 

i:N )],();,([ 00*00*
jijjii CCCC ΠΠ    ]),();,([ 10*10*

jjijjii ICCCC −ΠΠ
i:Y )],(;),([ 01*01*

jijijii CCICC Π−Π ]),(;),([ 11*11*
jjijijii ICCICC −Π−Π

3.2.1. Identical Competitors 

Here we assume the two ports have same demand and cost functions, and the same initial capacity 
before and after expansion, i.e., Ci

0=Cj
0:=C0 and Ci

1=Cj
1:=C1, and the costs are the same, i.e., Ii=Ij:=I.

Since the two ports are identical, we have i
*(C, C) = j

*(C, C) (C = C0 or C1) and k
*(C1, C0) = 

l
*(C0, C1). Using C0 for other port not expand and C1 for other expand, we have Δ i

*(C)= Δ j
*(C):= 

Δ *(C), ( },{ 10 CCC∈ ). Under these assumptions, the investment decision rules are as follows:   

(1) I<min( *(C0), *(C1)): The annual capital cost is less than the gain, regardless of expansion 
decision of the other ports. In this case, both ports will choose to expand and (Y, Y) is the unique 
Nash equilibrium. For example, if both ports have serious congestion problems facing a rapid 
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increase in demand, they will both expand, irrespective of the decision of the other.  
(2) *(C1)<I< *(C0): The annual capital cost is less than the gain if the other port does not 

expand, and more than the gain if it does. For each port, if the other port expands, it will not 
expand since I > *(C1). If the other port does not expand, it will expand because I< *(C0). 
Therefore, it is optimal for the port to choose the opposite strategy as the competitor. (N, Y) and 
(Y, N) are two Nash equilibriums. This is similar to the situation where the demand is just enough 
for one port to develop. If both develop, they will end up over capacity, which is bad for both 
ports.

(3) *(C0)<I< *(C1): The annual capital cost is more than the gain if the other port does not 
expand and less than the gain if it does. This happens when the expansion of one port exerts a 
detrimental impact on the other. It is better for the other to follow the strategy, to counteract the 
impact of the expanding port. Hence, one port better expands, if the other port expands, since I<

*(C1); if the other port does not expand, it will not expand since I> *(C0). Thus (N, N) and 
(Y, Y) are two Nash equilibriums.   

(4) I>max( *(C0), *(C1)): The annual capital cost for expansion is larger than the gain 
regardless of the number of expanding ports. In this case, both ports will not expand. (N, N) is the 
unique equilibrium of the investment decision for the whole competition game.  

3.2.2. General Competitors 

Having explored the decision rules for the identical competitors, this section begins to investigate the 
capacity investment game where ports have different operational cost and market demand functions. 
First, for each port, we define a symbol for possible gains from expansion, with possible strategies of 
the other port.  

Let : 
)(= 0*

jii CL ΔΠ : The gain for port i when port j does not expand. 

)(= 1*
jii CM ΔΠ : The gain for port i when port j expands. 

)(= 0*
ijj CL ΔΠ : The gain for port j when port i does not expand. 

)(= 1*
ijj CM ΔΠ : The gain for port j when port i expands. 

Following the discussions for identical ports, for each port, we have the following scenarios and their 
corresponding decision rules: 

Ik<min(Lk, Mk): it is optimal to expand;  
Mk<Ik<Lk: it is optimal to make a different decision from its competitor;  
Mk>Ik>Lk: it is optimal to make the same decision as its competitor;  
Ik>max(Lk, Mk): it is optimal not to expand. 

When the competitors are not identical, Li≠Lj, Mi≠Mj, there will be 16 scenario combinations, as for 
each decision rule in one port, there will be four responses from the other port. For each combination, 
two ports determine their respective best expansion strategy, using the normal form game presented in 
Table 1. Table 2 lists all the possible equilibrium strategies for each of the 16 combinations. Unlike 
the pricing subgame that has a unique equilibrium, the capacity investment game may have multiple 
equilibriums or no equilibrium in some scenarios. When there is no equilibrium, we cannot predict the 
strategy for the player with certainty. We analyze such scenarios in the following.   

Table 2: Nash Equilibrium of the Capacity Investment Game 
Ij<min(Lj, Mj) Mj<Ij<Lj Mj>Ij>Lj Ij>max(Lj, Mj)

Ii<min(Li, Mi) (Y, Y)  (Y, N)  (Y, Y) (Y, N)
Mi<Ii<Li (N, Y)  (Y, N)(N, Y)  No Equilibrium (Y, N)

Mi>Ii>Li (Y, Y) No Equilibrium (Y, Y)(N, N)  (N, N)
Ii>max(Li,Mi) (N, Y) (N, Y) (N, N) (N, N)
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When Mk>Ik>Lk, i.e., port expansion is only feasible when the other port also expands, there are two 
equilibriums (Y, Y) and (N, N). This situation occurs when the investment cost of a port is larger than 
the gain from the port expansion (Ik>Lk). However, if the competitor expands, it will exert serious 
impact on the target port. Thus, the best response for the target port is also to expand, to 
counter-balance the impact from the other port. However, if ports know the action of the other, no 
port will expand first, as Ik>Lk. Therefore, as a response strategy, (Y, Y) is impossible.  

For the scenario Mk<Ik<Lk, there are two equilibriums (Y, N) and (N, Y). For each port k, Mk<Lk means 
that the gain from expansion will be weakened by the expansion of the competitor, thus the port will 
be reluctant to make expansion decision if the other port expands. By comparing the net profits of 
each port under the two equilibriums, we find there is no dominating equilibrium.  

For the scenarios Mk < Ik < Lk and Ll < Il < Ml, for first port k, it is optimal to make a different 
expansion decision than the second port l; while for port l, it is optimal to make the same decision as 
port k. Thus there is no equilibrium.   

From Table 2, it is obvious that if one port has a clear indication on its strategy [Ik<min(Lk, Mk) or 
Ik>max(Lk, Mk)], there will be a unique pure strategy Nash equilibrium. All the border cells in the 
table contain at least one port that has a very clear choice for expansion strategy. Ik<min(Lk, Mk)
happens when the port expansion cost is low, and/or the gain from expansion is high. These are often 
associated with small scale ports and increasing demand in the hinterland, such as the port in 
Shenzhen in the past. On the other hand, Ik>max(Lk, Mk) often happens when the port is in an area 
with high construction costs, large scale operation, and the stable demand, which is much like the case 
for Hong Kong Port. If one port is in either one of the above conditions, the strategy of the other is 
easy to formulate, especially when it is depend on the strategy of the first one.  

However, the investment cost – gain relation will change, and at certain stage, neither port can 
indicate a clear direction. In this case, the competition strategy will be more interactive and 
inter-dependent, such as the strategies in the middle cells of Table 2. At present, the scale of port 
capacity and port throughput in Shenzhen and Hong Kong is very close.  However, there are still big 
differences in the port construction cost and operation cost between these two ports. Thus, port of 
Shenzhen can still give a clear indication on expansion strategy.  If these costs increase in the future, 
then the port development strategies of the two ports will be more interdependent.  

Next, we analyze how profit changes with capacity expansion. As the capacity expansion is discrete, 
we cannot analyze the gain using comparative static method. Therefore, we check the sign of the gain 
by subtracting the profit of non-expansion from that with expansion. Assuming the likelihood of 
expansion is proportional to the gain from expansion, we can determine which port is more prone to 
expand.  

The proof of the nature of incremental profit with respect to its own capacity expansion is in 
Appendix. Note that the port expansion will increase its own profit only when 

0>1)(2)(2 +− l
jj

u
ii CfCf ββ , where Cu is the new capacity that port i is considering reaching, and 

Cl is the existing capacity at the other port. In marginal cost, the condition is: 

1<
∂
∂

−
∂
∂

j

l
j

i

u
i

p
MC

p
MC

        (10) 

This condition states that for an expanding port to increase its profit, the marginal cost increasing rate 
should not be higher than that of the competitor by one. This points out that if the demand sensitivity 
is high at one port, expansion is not a good strategy to use as it cannot increase the profit.  
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3.2.3. Numerical Examples 

In this section, we show the application of capacity expansion game using numerical examples, to 
illustrate pure Nash equilibriums in table 2.   

Example 1 In this example, we set 1=x , i=0.6, j=0.4, i=0.1, j=0.2, i=2, j=1, Ci
0=3, Cj

0=2, 
C=1. Ii=0.014, Ij=0.01, where C is the capacity increment due to the lumpy investment.

The profits with different investment decisions under equilibrium prices are in Table 3. In this 
example, Li=3.1240-3.1104=0.0136, Mi=3.0175-3.0032=0.0143, Lj=1.1751- 1.1638=0.0113, 
Mj=1.1478-1.1364=0.0114. This corresponds to the scenario Li<Ii<Mi and Ij<min(Lj, Mj). Since port j
always has an incentive to expand, port i will expand, too. Therefore, the pure strategy Nash 
equilibrium is (Y, Y). Compared with the ),( NN  decision pair, the ),( YY  decision pair result in 
lower profits for both ports since 3.0175-0.014=3.0035<3.1104, 1.1478-0.01=1.1378 <1.1638. This is 
a Prisoners' Dilemma.   

Table 3: Example 1 when investment cost not subtracted 
Nj : Yj :

Ni : 3.1104; 1.1638   3.0032;1.1751-0.01

Yi : 3.1240-0.014;1.1364 3.0175-0.014;1.1478-0.01

The next four numerical examples are to show the impacts of base demand, market share, price 
sensitivities, and cost parameters on the investment decisions. 

Example 2 (Base demand and market share) In this example, we set i= j=0.1, i= j=1, C0
i=C0

j=2, 
ΔC=1 and Ii=Ij=0.05. Table 4 provides the equilibrium investment decisions for different base 
demand, and market shares of each port.

Table 4: Impact of market demand on capacity expansion decision 
1=x 2=x 3=x 4=x

i=1; j=0  (N, N)  (Y, N)  (Y, Y) (Y, Y)
i=1/2; j=1/2  (N, N) (Y, Y) (Y, Y) (Y, Y)
i=1/3; j=2/3  (N, N) (N, Y)  (Y, Y) (Y, Y)

The results of example 2, given in Table 4, show that with the increase of the base demand x , the 
two ports will be more likely to expand. When the total base demand is fixed at 2=x , the port will 
be more likely to expand when its market share increases, and the other port tends not to expand when 
its market share decrease.  

Example 3 (Price Sensitivity) In this example, we set x =1, i= j=0.5, i= j=1, C0
i=C0

j=2, ΔC=1 
and Ii=Ij=0.0125. Table 5 shows the equilibrium investment decisions for different values of i and j.

Table 5: Impact of price sensitivities on the expansion decisions 
j=0.1 j=0.2 j=0.3 j=0.4

i=0.1  (Y, Y) (Y, Y) (N, Y) (N, Y)
i=0.2 (Y, Y) (Y, Y)(N, N) (N, N) (N, N)
i=0.3 (Y, N) (N, N) (N, N) (N, N)
i=0.4  (Y, N) (N, N) (N, N) (N, N)

Example 3 shows the impact of price sensitivities on expansion decisions. When i=0.1, the increase 
in the value of j will make port i reluctant to expand. This is because the gain in port expansion 
decreases with the increase in cross price sensitivity. Table 5 also shows that the increase in the values 
of both i and j will make both ports not expand. When demand is insensitive to prices (small k),
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expansion can generate positive gain from the reduction in congestion. Otherwise, the gains from 
expansion cannot offset the increase in congestion cost due to the increased throughput.  

Example 4 (Operational Cost) Following example 3, set 1=x , i= j=0.5, i= j=0.1, Ci
0=Cj

0=2, 
ΔC=1 and Ii=Ij=0.015. The investment decisions at equilibrium are in Table 6 for different values of 

i and j.

Table 6: Impact of operational cost on the expansion decisions 
j=0.5 j=1.0 j=1.5 j=2.0

i=0.5 (N, N) (N, N) (N, Y) (N, Y)
i=1.0 (N, N) (N, N) (N, Y) (N, Y)
i=1.5 (Y, N) (Y, N) (Y, Y) (Y, Y)
i=2.0 (Y, N) (Y, N) (Y, Y) (Y, Y)

k is proportional to the average marginal cost in the specific functional form for a given throughput 
level.  This example shows that if a port has a large average marginal cost, its expansion can 
effectively reduce congestion cost.  

Example 5 (Investment Cost) In this example, we set x =1, i= j=0.5, i= j=0.1, i= j=1, 
Ci

0=Cj
0=2, and ΔC=1. Table 7 provides equilibrium investment decisions for different values of the 

investment costs Ii and Ij.

Table 7: Impacts of investment cost on the expansion decision 
Ij=0.010 Ij=0.012 Ij=0.014 Ij=0.016 

Ii=0.010 (Y, Y) (Y, Y) (Y, N) (Y, N)
Ii=0.012 (Y, Y) (Y, Y) (Y, N) (Y, N)
Ii=0.014 (N, Y) (N, Y) (N, N) (N, N)
Ii=0.016 (N, Y) (N, Y) (N, N) (N, N)

Example 5 shows that the increase in investment cost can reduce the possibility for expansion. When 
two ports have different investment costs, the one with lower investment cost is more likely to 
expand.

4. A Case Study 

In this section, we use numerical analysis to demonstrate the application of the model in analyzing the 
competition between Hong Kong and Shenzhen container ports, the two ports sharing the same 
hinterland. Compared with Shenzhen, Hong Kong port has a relatively larger market share, a larger 
initial capacity size, and a higher operation cost for the same throughput. To compete, both ports can 
consider capacity expansion and adjustment in price. For equal size capacity expansion, the container 
port in Hong Kong needs a higher investment cost. Therefore, in this numerical analysis, we use a 
smaller port with lower market share, lower operational and investment costs to represent Shenzhen, 
and the other port for Hong Kong, i.e., H> S, H> S, IH>IS, CH

0>CS
0, where the index H and S refer 

to Hong Kong and Shenzhen respectively. Let H=0.6, S=0.4, H=1.5, S=1.0, IH=0.05, IS=0.03, 
CH

0=2.0, CS
0,=1.5, ΔC=1. In Table 8 and 9, we calculate the Nash equilibrium in expansion strategy, 

equilibrium prices (pH
*, pS

*), and equilibrium profits ( *~
HΠ , *~

SΠ ) for different values of H and S

when both ports compete using pricing and investment. The letters in the parenthesis stand for the 
strategies for Hong Kong port and Shenzhen port respectively. 
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Table 8: H= S=0.1
x =1.2 x =1.4 x =1.6

Both ports do not 
invest 

*
Hp =7.29 
*
Sp =6.42
*~
HΠ =4.3142 
*~
SΠ =3.4231 

*
Hp =8.50 
*
Sp =7.49
*~
HΠ =5.8722 
*~
SΠ =4.6593 

*
Hp =9.71 
*
Sp =8.56
*~
HΠ =7.6698 
*~
SΠ =6.0856 

At investment 
equilibrium 

(N, N) 
*
Hp =7.29 
*
Sp =6.42
*~
HΠ =4.3142 
*~
SΠ =3.4231 

(N, Y) 
*
Hp =8.37 
*
Sp =7.26
*~
HΠ =5.7000 
*~
SΠ =4.6941 

(Y, Y) 
*
Hp =9.30 
*
Sp =8.15
*~
HΠ =7.5023 
*~
SΠ =5.9238 

Table 9: H=0.1, S=0.3
x =1.2 x =1.4 x =1.6

Both ports do not 
invest 

*
Hp =7.77 
*
Sp =2.45
*~
HΠ =4.9133 
*~
SΠ =1.0981 

*
Hp =9.07 
*
Sp =2.85
*~
HΠ =6.6876 
*~
SΠ =1.4946 

*
Hp =10.37 
*
Sp =3.26
*~
HΠ =8.7348 
*~
SΠ =1.9521 

At investment 
equilibrium 

(N, N) 
*
Hp =7.77 
*
Sp =2.45
*~
HΠ =4.9133 
*~
SΠ =1.0981 

(N, Y) 
*
Hp =8.74 
*
Sp =2.65
*~
HΠ =6.2073 
*~
SΠ =1.5297 

(Y, Y) 
*
Hp =9.70 
*
Sp =2.97
*~
HΠ =8.1578 
*~
SΠ =1.9276 

There are several interesting results from these two tables.  

1. Both ports will expand if and only if the base demand is high. This is illustrated in the last column 
( x =1.6) in both tables.  

2. Compared with Shenzhen port, Hong Kong requires a larger base demand to justify the expansion 
decision. When x =1.4, the optimal strategies for Shenzhen (Hong Kong) in both table 8 and 9 
are to expand (not to expand). This implies that Shenzhen port enjoys an advantageous position in 
capacity expansion. 

3. Any port expansion will decrease the equilibrium prices at both ports. From both tables, whenever 
the equilibrium investment strategies include expansion at any port, the prices at both ports are 
lower than their corresponding prices with no expansion.  

4. Shenzhen port can gain from expansion. For example, in Table 9, when x =1.4, expansion in 
Shenzhen can increase its equilibrium profit from *~

SΠ =1.4946 to *~
SΠ =1.5297, a gain of 0.0351. 

On other hand, Hong Kong will always suffer a profit loss from expansion.  
5. Furthermore, port expansion will not increase total profit of the two ports.  For example, while 

Shenzhen port gains from expansion, it is less than the losses in Hong Kong. The total profit of 
the two ports is lower comparing with the non-expansion case. In Table 8, when 1.4=x ,
Shenzhen can gain profit from expansion (4.6941-4.6593=0.0348). However, the total profit of 
the two ports decreased by (5.8722+4.6593)-(5.7000+ 4.6941)=0.1374. When the pure strategy 
Nash equilibrium is both expands, they all have a lower profit than that with no expansion, which 
resemble the Prisoner dilemma situation.   
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5. Summary 

This paper studied the competition between two ports, serving the same hinterland, using both 
capacity expansion and pricing. Quantity demanded at each port is a function of its own and the 
competitor's prices. In addition to the short-run market competition measures, such as pricing, the 
increasing market demand from the same hinterland also provides opportunity for capacity expansion. 
For given throughput, port expansion can reduce the marginal operation cost, which can lead to lower 
user cost and higher market share. To counter balance this impact, the other port also needs to reduce 
its price(s), to maximize its overall profit.  

Based on the decision making process for port expansion and pricing, this paper constructed a 
two-stage game theory model to analyze the possible outcomes in this duopoly market. Using 
backward induction, we first analyzed the pricing strategy of the two ports for given capacity at both 
ports. We showed the unique Nash equilibrium for the pricing subgame following the Bertrand 
competition with differentiated products. For each port, its equilibrium price increases with its 
marginal cost, base market demand, and market share. Port expansion can reduce prices at both ports, 
which is beneficial to the users. We also analyzed the impact on equilibrium throughput and profit 
with the capacity change. 

In capacity investment game, we identified the pure strategy Nash equilibriums between two ports, for 
different scenarios characterized by the possible gains from port expansion, and the investment costs. 
Using numerical examples, we show that each port will be more inclined to expand when the total 
market demand is high, or it has a large market share. A port will be more likely to expand if it has 
high operational cost, low investment cost and low own price sensitivity. In considering expansion, 
for one unit decrease in price, if the difference in marginal cost increases between the expansion port 
and competitor is less than one, then the expansion can bring positive gain to the expanding port.   

Our case study, based on numerical examples, demonstrates possible outcomes from port competition 
between Hong Kong and Shenzhen. If expansion is constrained to be one at a time, the numerical 
results show that both ports can expand only when the market demand is sufficiently high. Shenzhen 
is more likely to expand when the market is increasing, but not sufficient for both to expand. Port 
expansion can bring benefit to users, but not necessarily to ports. Shenzhen can benefit from its 
expansion if Hong Kong does not expand. However, the gain from expansion at Shenzhen port cannot 
compensate the losses at Hong Kong Port. If both expand, then each port will have a lower profit than 
if both do not expand.  

Finally, this study focuses on the payoffs for the two ports from private business operator’s 
perspective. The social outcomes of port competition with pricing and capacity development will be a 
direction for future study.  
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Appendices

1. Comparative statics for the equilibrium price and profit. 

Solving the two best response functions contained in (5) for the equilibrium price: 
*
kp = )/())(21( kkkkk Cfx λβμβ+ ,

where lllkkk CfCf ββλ )(2)(23 ++= , and lllkk Cf βαμ )(21 ++=     

Differentiate the equilibrium price with respect to base market share, own price sensitivity and cross 
price sensitivity, we can obtain: 
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From the demand function, we can obtain quantity demanded at the equilibrium by substituting the 
price with the equilibrium prices. The equilibrium quantity demanded at the equilibrium price is: 
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The properties of the equilibrium throughput w.r.t. the demand parameters and capacity change are: 
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2
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Using the equilibrium price and quantity, we can calculate the equilibrium profit. Differentiate the 
equilibrium profit with respect to its own capacity and the capacity of the other port, we obtain: 
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