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Abstract

With empirical evidence from marine mutual insurance (MMI), an impulse feedback model is constructed to 
address how information sharing can help increase both the social welfare and the efficiency of operation of 
the MMI system. Focusing on information sharing, this paper considers the premium policy optimization of a 
pure (i.e., non-stock consideration) mutual insurance system with a homogeneous market of identical 
members. Our findings confirm that the principle of information sharing can be attained under equal-risk 
pooling, but not necessarily under unequal-risk pooling, and reveal that quantifiable differences exist in the 
valuation of information sharing under the two schemes of risk pooling. It indicates that the key to successful 
MMI is equal-risk pooling. Algorithms are developed to compute the value of information sharing by solving 
the HJB equations and quasi-variational inequalities. It determines that information sharing can achieve best 
social welfare as well as efficient operation of a P&I Club. The conclusion provides a scientific basis for both 
managerial strategy and competition regulation. The findings are also applicable to a wide range of reserve 
and inventory management problems.  
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1. Introduction

In the marine insurance market, mutual Clubs are not the pure commercial insurance enterprises as 
conventionally defined. Insurance is based on membership of the Club. An individual ship-owner, 
who wants to pool his risk in a mutual Club, must first obtain membership through payment of a 
membership fee, which is deemed to be the premium as defined in commercial insurance (Cass, 
Chichilnisky and Wu, 1996; Lamm-Tennant and Starks, 1993).  

Numerous studies into the formation of mutual insurers concern adverse selection (Smith and Stutzer, 
1990; Ligon and Thistle, 2005), moral hazards (Smith and Stutzer, 1995) and information asymmetry 
(Cabrales et al, 2003). At the outset of the insurance industry, there were only mutual insurers, and 
because of the existence of adverse selection and information asymmetry, the original risk pool 
degenerated into two types of sub-risk-pools formed by the homogeneous assureds. 

There are a total 28 Marine Mutual Clubs, 13 of which are members of the International Group of P&I 
Clubs (see table 1). The 13 P&I Clubs that comprise the International Group of P&I Clubs (the IG) 
are mutual not-for-profit insurance organizations that between them cover third party liabilities, which 
include pollution, loss of life and personal injury, cargo loss and damage and collision risks. The 
Clubs are mutual organizations, that is, the shipowner members are both insured and insurers, as the 
members both own and control their individual clubs (Gold, 2002; Hazelwood, 2000). The day-to-day 
activities and operations of the Clubs are delegated to managers. The 13 P&I Clubs cover about 95% 
of the world’s ocean-going vessels in terms of tonnage (JLT, 2003; Golish, 2005). This monopoly 
position, and the way that P&I Clubs operate, have triggered two European Commission (EC) 
investigations and rulings, in 1985 and 1999 respectively, in the field of competition law (Gyselen, 
1999; EC, 1985, 1999). 
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Name  
of Club 

Year  
Established Headquarters IG

member
Annual 
Growth

Size (gt)  
(million)  

1 UK 1869 London Yes 10.06% 120 
2 Gard 1907 Arendal Yes 4.76% 98 
3 Britannia 1854 London Yes 5.68% 80 
4 Steamship 1974 London Yes 1.38% 65 
5 Standard 1885 London Yes 13.03% 58 
6 Japan 1950 Tokyo Yes 2.24% 54 
7 Skuld 1897 Oslo Yes -5.23% 52 
8 W. England 1856 London Yes 3.73% 46 
9 N. England 1860 Newcastle Yes 19.72% 43 
10 London 1866 London Yes 2.46% 28 
11 American 1917 New York Yes 19.33% 18 
12 Swedish 1872 Goteborg Yes 2.36% 15 
13 China 1984 Beijing No 30.47% 9 
14 Shipowners 1855 London Yes 9.86% 9 

Average   9.11% 46 
Table 1: Major Marine Mutual Insurance 

Notes: 1. This has been combined from various sources by the authors. 
 2. IG – International Group of P&I Clubs; g.t. – gross tonnage of entered ships. 

A key message from the EC is that the P&I Club system should be more transparent both to its 
members and to the outside world, in order to ensure full implementation of the principle of 
information sharing (Garner, 1999; Macey, 2004). The International Maritime Organization (IMO) has 
also asked P&I Clubs to open their books, for the general interest of “safer ships and cleaner oceans.” 
Such suggestion has always been rejected by P&I Clubs under the defense of ‘protection of privacy’, 
so the lack of data from P&I Clubs contributes to the need for academic research to be conducted in 
this area (Johnstad, 2000; Bennett, 2000). Much information about MMI in general has been “veiled 
in antiquity and lost in obscurity” (Dover, 1975). All of these discussions have pointed to one critical 
legal argument — whether MMI should open up or continue to keep closed information on claims 
records and other information. However, this paper determines that information sharing can achieve 
best social welfare as well as efficient operation of a P&I Club. 

Assuming the standard Brownian motion characterization of a claim process associated with each 
individual vessel of a club (Tapiero and Jacque, 1987; Asmussen and Taksar, 1997; Siegl and Tichy, 
1999), we develop for the MMI cost minimization problem an impulse feedback model of a pure 
MMI (Bensoussan and Lions, 1984; and Aubin, 2000). We focus the analysis on a comparison of 
optimal insurance positions (i.e., funds on hand) under two information structures — unequal-risk 
versus equal-risk. In practice, P&I Clubs collect premiums at the beginning of each policy year on 28 
February. Therefore, we model a P&I Club as an impulse control system in the sense that the total 
reserve of the Club is “reset” by an impulse premium control, so that insurance claims incurred during 
the policy year can be sufficiently covered at a desirable level of risk pooling.  

Through an impulse feedback analysis, we first calculate the optimal premium policies (in terms of 
total-cost minimization) under different risk pooling structures (unequal- versus equal-risk pooling). 
We then determined a quantifiable extra value in an unequal-risk pooling MMI system, as compared 
with an equal-risk pooling one. In this paper, this extra value term is referred to as the “value” of 
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information sharing. We develop algorithms to compute the value of information sharing, by solving 
the HJB equations and quasi-variational inequalities. 

A

Figure 1: Value of Information Sharing

2. Impulse Feedback Model for Unequal-Risk Pooling 

Consider a general mutual insurance Club of n members over a time horizon  (when ],0[ T T ,
), during which each member i establishes an account of insurance position 

(i.e., individual account balance) at time t, and a record of the individual claims incurred by member i
(denoted by ). The records of individual accounts and claims are kept confidential at the Club. Let 

each Gaussian claim process
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the position vector as , and by a capital letter the sum . The dynamics of

an MMI system can be concisely presented in vector form as

),,( 1 n
ttt yyy

n

i

i
tt yY

1

ttt dwdtydy )( ,

where is an vector drift, )( ty 1n
nnij is a matrix disturbance with iii  and 0ij

for , and  is an n-dimension Wiener differential (Gollier and Wibaut, 1992; Taksar, 2000).

As a function of the Club’s state , let be a nonnegative non-decreasing management cost 

(Lagrangian) associated with member i of the Club, and be the total MI 

operating cost of the Club. Similarly, there is an impulse cost (including the premium payment)
associated with each premium call for renewal year k, denoted by , and an aggregate

impulse cost for the entire Club  for all
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problem of minimizing the total insurance costs under unequal-risk information (Kavadias and Loch, 
2003; Kulkarni, Magazine and Raturi, 2004), which we formulate, in vector form, as an impulse
control system (Bensoussan and Lions, 1984;  Aubin, 2000), as follows:
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where is a terminal function. )( Ty

2.1. Optimal Premium Policy under Unequal-Risk: Impulse Feedback Control

According to impulse control theory, the value function )( y is a solution to the following 
quasi-variational inequalities (QVI) system (see Polyanin and Zaitsev, 1995; Aubin, 2000; Liu, 2004): 

i) r (y) A (y) H(y,D ) 0
ii) (y) ( K)(y) 0
iii) ( K) (r A ) H 0

(4)

where:
1) ),,()( 1 nyyyDD represents a gradient of , where iy is the marginal insurance 

cost shared by member i.
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A is a second-order differential (in viscosity sense) operator.

3) LDDyH ,),( is the Hamiltonian of the MI system (3).

4) )()(inf:))(( qKqyyK
q

is termed the inf-convolution of functions  and K.
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According to impulse control analysis, there exists for system (3) an optimal position
termed an impulse feedback control, to which the actual position at the beginning

of each renewal period must be “reset” by collecting premiums accordingly.  For the sake of 
reference, we present below the optimal impulse feedback policy for the individual positions, but with 
the proofs omitted (Aubin, 2000; Liu, 2004).

),,( 1 nyyy

PROPOSITION 1. For the MMI system (3), let be the position (vector) realized at review time

k before the renewal premium is collected; i.e., . Then there exists an optimal

position , such that the optimal renewal premium is determined by the following base-stock policy:
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We shall note that the optimal impulse feedback policy of the base-stock type described in Proposition 
1 is obtained without regard to the type of information structure (i.e., unequal-risk versus equal-risk).
Therefore, we shall confine our analysis of MMI systems to feedback policy, under either the 
unequal-risk or equal-risk information structure. For convenience, we use the term unequal-risk (or
equal-risk) impulse feedback to differentiate base-stock feedback types under an unequal-risk (or
equal-risk) information structure. 

2.2. Heterogeneous Membership: Unequal-Risk Pooling

While complete information about positions and claim records is kept at the Club, each member i is
only informed of the individual optimal impulse feedback position , and her own claims process

. The Club now needs to determine a risk level for the MMI system (3). For this purpose, we define
an optimal unequal-risk risk level  as:
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Under the unequal-risk impulse feedback, each member i is informed of  and , which are
kept confidential as its unequal-risk records. Note that an unequal-risk MMI system is in general

unequal-risk pooling. At the Club level, an average risk level can be calculated using 
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as an assessment of aggregate risk pooling. Let ,y denote the unequal-risk MI impulse
feedback system, as described by Proposition 1. 

3. Equal-Risk Pooling for Homogeneous Membership

Suppose that the managers of the same Club are compelled to operate with an equal-risk pooling
scheme, under which an optimal base-stock policy, denoted by , is now open to every member of
the Club. We shall note that the simplest implementation alternative of equal-risk pooling is to adopt 
homogeneous membership. Before we discuss the details of , let us introduce the 
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)~,,~(~ 1 nyyy
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concept of equal-risk pooling regarding insurance claims. Let be the total insurance 

position of the Club under an equal-risk information structure. In this case, the Club strives to 
maintain the aggregate position 
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insurance position Y~ is expected to be reduced in comparison with the total unequal-risk position 

, where is the unequal-risk optimal position as given in Proposition 1. Thus, the

allocation of total funds 
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Y~ among heterogeneous members should no longer be determined based

on an actual individual claims record . Instead, the individual premium rates are determined
according to the principle of information sharing; i.e., the principle of equal-risk sharing, as opposed
to unequal-risk pooling as given in (5). The idea of the collective coverage of claims by the equal-risk
allocation of premium contributions is termed equal-risk pooling.

ix

3.1. Impulse Feedback Model under Equal-Risk Pooling

Thus, the result of equalizing risk pooling, (or equivalently homogenizing membership) is a 
potentially reduced effective share of claims coverage. The individual’s effective share of claims
coverage under equal-risk pooling, denoted as , has the same mean as the actual

individual claim , but has a smaller variance (for ) as a result of equal-risk pooling (or
membership homogenizing); i.e., 
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The optimal equal-risk impulse feedback position can then be obtained from the )~,,~(~ 1 nyyy
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same QVI system (4), except for the operator , which is modified with A~ i
~  as: 
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3.2. Equal-Risk Pooling under Impulse Feedback 

In this subsection, we show that the optimal position entails an equal-risk
pooling scheme among all the members. For an equal-risk MMI system, an optimal aggregate risk
level can be defined as 

)~,,~(~ 1 nyyy

XY~Pr~
.

With the optimal aggregate risk level 
~

, an optimal equal-risk MMI impulse system can be denoted

as
~,~y . An optimal equal-risk impulse feedback MMI system

~,~y can be determined by 
solving the corresponding QVI system. An optimal unequal-risk impulse feedback MMI system was 
previously obtained as ,y .

Unlike the unequal-risk pooling MMI impulse system, we show below that individual impulse
feedback under equal-risk pooling , which is uniquely determined from the corresponding QVI 

system, can be implemented through an equal-risk level 
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for all members.

PROPOSITION 2. Denote by 
~,~y an optimal equal-risk impulse feedback MMI system. Then,

under an equal-risk pooling scheme at level 
~

, it holds that: 
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i ix N . This concludes the proof of Proposition 2. 

4. The Value of Information Sharing 

4.1. Define the Value of Information sharing

We have thus far obtained two value functions associated respectively with two risk pooling structures
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of an MMI system, namely, the value function of an unequal-risk system ,y  versus the

value function ~ of an equal-risk system
~,~y . By definition, a value function represents the

total value (a cost in this case) of a Club optimally operated under a specific risk pooling structure,
either unequal-risk pooling or equal-risk pooling. In this sense, the difference between the two value 
functions can be used as a measure of the value (or the prize) for information sharing, especially the 
difference in the two value functions when evaluated at their respective optimal base-stock positions.
For this purpose, we define the value of information sharing as: 

)~(~)(mutual yyP ,            (8*)

where  and y y~ are the optimal base-stock positions respectively under unequal- and equal-risk. 

First, we need to be assured that a nonnegative difference between the two value functions exists (i.e., 
0~ , and therefore ). Intuitively, the difference is nonnegative (i.e.,), 

since equal-risk pooling should reduce the total insurance cost. Now let us ascertain this intuition
using rigorous analysis. Since 
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Then, the HJB equation of an unequal-risk ,y can be derived from system (4) as follows:
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Or, equivalently, we can write the above as: 
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i is an augmented Hamiltonian for the equal-risk

MMI system
~,~y , of which the HJB equation can be written as: 
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With 02
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 and 0i  for some i, the HJB equation (9) of an unequal-risk MMI system can

immediately verify that 
)~~,~,~,(~)~,,,(~ AA DyFDyF .

The fact that the Hamiltonian H is identical for both unequal-risk and equal-risk systems implies that
 and ~ can only differ by an additive functional term; i.e., ~ for some functional term 

0 . With this, the value of information sharing can be analytically measured by . In principle,
the exact expression of this price term can be obtained by solving for  and ~  from the

respective HJB equations of the unequal-risk MMI system ,y and the equal-risk MMI 

system
~,~y , respectively. However, closed-form solutions are often unattainable, and even

numerical solutions are still too complex to be tractable using numerical methods. In the Proposition
below, we derive a more tractable lower-bound function , which gives the least cost difference
caused by information privacy.

PROPOSITION 3.  Let  and ~ be the respective value functions under the unequal-risk and
equal-risk MMI systems with a strictly convex Lagrangian L. Then, for each non-impulse interval
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)1,[ +kk  for all qTk∈ , the following holds true: 

1) The value functions ϕ  and ϕ~  are strictly convex for )1,[ +∈ kkt ; i.e., 02
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2) There exists a functional 0>δ , such that δϕϕ += ~ . Therefore, 0privacy >= ∗δP , where 
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Proof.  Item 1 above is a proven result in control theory (Fleming and Soner, 2006), and its proof is 

thus omitted. Given 02
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 for all i, item 2 of Proposition 3 can be verified from the HJB equation 

(9). To prove item 3 of the Proposition, we obtain from (9) the following variational inequality:  
)~,,,(~),,,( ϕϕϕϕϕϕ AA DyFDyF > ,

Where )(⋅F  differs from )(~ ⋅F  only in the second-order operator A . Then, using δϕϕ += ~ , we 
can verify from HJB (9) that   
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 and 0>Δ iσ  for 1>n , the proof of item 3 of Proposition 3 is immediate 

from the above equality. With this, we conclude the proof.   

4.2. Computing the Value of Information Sharing 

In summary, the exact value of information sharing, denoted by )~(~)(mutual
∗∗ −≡ yyV ϕϕ , can be 

computed as follows:  
1) Solve the unequal-risk and equal-risk HJB equations respectively for ϕ  and ϕ~ .
2) Obtain the respective optimal base-stock positions, ∗y  (unequal-risk) and ∗y~  (equal-risk).  
3) Then compute the value of information sharing, i.e., )~(~)(mutual

∗∗ −= yyV ϕϕ .

The above solution for the exact price of privacy requires the solving of two HJB equations, one for 
the unequal-risk system and the other for the equal-risk system. These equations mostly require 
complex numerical methods to solve them. However, using Proposition 3, we can construct an 
approximate solution, which requires much less computation. The scheme for the approximate method 
of solution is described below:  
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1) Solve for the equal-risk ~ for its HJB equation, and obtain y~ .
2) Determine:
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3) Determine a linear functional difference  with by solving the following 
first-order PDE system:

1ˆ C 0ˆ2D
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iy
 for all i.

4) Then compute the approximate value of information sharing .)~(ˆˆ
mutual yV

The rationale of the above approximation is to seek the approximate difference in the form of a linear
function (i.e., ), so as to avoid solving the HJB equations twice. 0ˆ2D

4.3. Value of Information Sharing and Volatility of Risk 

Compared with the computation of the value of information sharing, a more important and interesting 
topic concerns the characteristics of the value of information sharing, i.e., )~(~)(mutual yyV .
By Item 3 of Proposition 3, the characteristics of the information sharing value are characterized in
the corresponding Hamiltonian ),,,( ADyF , which has been obtained in Proposition 3 as: 
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where iii
~ is the variability differential between non-risk pooling and equal-risk pooling. 

For the ‘ideal’ case of homogeneous membership with i.i.d. individual claim processes with identical
i  for all ni ,,1 , the variability differential can be determined as

)11(~
niii . In terms of the Hamiltonian characterization of 

)~(~)(mutual yyV , it can immediately be seen that the value of information sharing increases
along with the average variability and the size of the Club n. Both parameters  and n are
measures or indicators of the volatility of underlying risks in terms of aggregate claims. With the
finding in this paper that homogeneity facilitates optimal realization of the value of information 
sharing, it is without loss of generality to conclude that the more volatile the insurance risk is, the 
more competitive the mutual insurance becomes.

5. Findings and Implementation 

First, let us summarize the useful observations and managerial implications that can be drawn from
the results we have obtained so far in this paper, especially from Proposition 5.

5.1. Findings and Implications 

1) The price of information privacy is mainly dependent on iii
~ , where 

2
~ i

i and

n

i
i

1

2 . If the claims are deterministic ( 0i ), then the price of privacy would vanish, 

that is, there would be no difference between an unequal-risk and an equal-risk information
structure without regard to the degree of heterogeneity of the members.

2) A unified tonnage-based premium policy can be justified only if the tonnage of a vessel is linearly
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associated with the variability of the claims incurred by the vessel. This finding suggests that a
rigorous and intensive statistical study of the correlation between tonnage and its claims needs to 
be conducted, so as to determine whether or not a tonnage-based premium policy is justifiable. 

3) Under an unequal-risk information structure, the total cost minimizing premium policy entails an
unequal-risk pooling scheme among the heterogeneous members of a P&I Club. Under the 
optimal unequal-risk premium policy, the individual’s share of risk is solely determined by its
actual claims record.

4) Given the fact that the tonnage-based premium policy has been practiced under unequal-risk
information in P&I Clubs since their establishment 150 years ago, let us suppose that the
tonnage-base premium policy is justified (i.e., that tonnage is linearly associated with the variance
of claims). The above findings 1), 2), and 3) then explain the phenomenon in marine insurance
that vessels of a similar tonnage tend to join the same P&I Club. 

5.2. Implementation of Equal-Risk Pooling

The principle of information sharing implies the equal-sharing of risks. Noting that the equal-pooling
of risk can be attained with an optimal premium policy under an equal-risk information structure, we 
only need to examine how to implement an unequal-risk equal-risk pooling scheme; i.e., equal-risk
pooling in an unequal-risk MMI system ,y . Two scenarios for implementing equal-risk pooling
in an unequal-risk MMI system can be immediately considered: One with an equal-average level of

risk
n

i

i

n 1

1
, where is as that determined in (5), and the other with an equal-level of riski

~
. In what follows, we examine the details of the implementation of unequal-risk equal-risk

pooling.

The insurance threshold position for each member i under the equal-average risk  scheme,
denoted by )(iy , can be determined to be:

ii
iy )1()( 1 .

In vector form, we write the equal-average risk pooling position as ))(,),(()( 1 nyyy .
From equation (5), we can determine that in general the equal-average risk pooling position )(y
and the optimal unequal-risk pooling position  differ (i.e.,y yy )( ). Individually, some
would have a higher threshold position (i.e., ii yy )( ) if i , and some may have a lower 
threshold position (i.e., ii yy )(  )  if i .

Since the total insurance cost is minimized under an optimal threshold , we can conclude that the
total cost under an equal-average risk scheme, denoted by

y
)(y , can be no less than the unequal-risk

value function  (i.e., )(y )())(( yy ). This suggests that, in terms of total Club cost, 
under an unequal-risk MMI system it is worse to implement an equal-average risk pooling scheme 
than it is to implement an optimal unequal-risk pooling scheme. 

Now let us examine what happens when an equal-equal-risk risk level 
~

is implemented for the 

unequal-risk MMI system. In this case, the individual threshold position, denoted by )~(iy , can be 
determined as: 

ii
iy )~1()~( 1 .

Using similar arguments, we can show that )())~(( yy . Thus, we can conclude that in terms
of total insurance cost, an unequal-risk pooling system is better for the allocation of premiums in an
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of total insurance cost, an unequal-risk pooling system is better for the allocation of premiums in an 
unequal-risk MMI system.    

6. Conclusion

It is concluded that an open policy or equal-risk information can lead to a more efficient MMI system 
overall for society, and to a greater degree of fairness and information sharing for the insured. The 
paper determines that information sharing can achieve best social welfare as well as efficient 
operation of a P&I Club. The study provides a scientific basis for future legislation on MMI 
competition law. The conclusion provides a scientific basis for both managerial strategy and 
competition regulation.  
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