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Abstract 
 
This paper presents an innovative approach to integrate logistic regression and Bayesian Network together 
into risk assessment. The approach has been developed and applied to a case study in the maritime industry, 
but it can also be utilized in other sectors. Applications of the use of Bayesian networks as a modeling tool in 
maritime applications have recently been demonstrated widely. A common criticism of the Bayesian approach 
is that it requires too much information in the form of prior probabilities. And that this information is often 
difficult, if not impossible, to obtain in risk assessment (Yang et al., 2008). Traditional and the most common 
way to estimate the prior probability of accidents is by expert estimation. There are some typical problems 
associated with using the subjective probability, provided by expert, as a measure of uncertainty in risk 
analysis. 
 
In this research, a binary logistic regression method is used to provide input for a BN, making use of different 
resources of data in maritime accidents. 
 
Keywords: Bayesian Network, Marine Accident, Logistic Regressin, Risk assessment 
 
 
1.  Introduction 
 
The concept of risk assessment and management are becoming more and more widely used in hazardous 
industries. Numerous researches have been done on this area (Kristiansen, 2005). Risk is commonly defined 
as a measure of the probability of a hazard related incident occurring, and the severity of harm or damage that 
could result (Manuele, 2003). So risk assessment is widely recognized as a systematic and science-based 
process for describing risk (Vose, 1996). The main targets of are usually in preventing occupational accidents 
or disasters. In order to be able to focus on high-risk areas, both the absolute risk level and the relative 
importance of different causes have to be quantified, which is one of the challengers safety managers face 
when trying to understand the complex safety systems, particularly in the case of rare events (Szwed, 2006). 
Once this risk information has been quantified, manager and decision makers can use it to focus on the risk 
control options, develop appropriate policies and allocate resource that will mitigate risk. 
 
However, rare event risk information inherently suffers from a sparseness of accident data. So the expert 
judgment is often used to develop frequency data for the risk analysis (Moslesh et al., 1988; Morgan and 
Henrion, 1991). Nevertheless, expert judgment must be used with care (Anderson et al., 1999). Kahneman et 
al. (1982) discuss the numerous biases and heuristics that are introduced when humans process information 
and attempt to provide judgments. 
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Logistic regression has proven to be a powerful modeling tool for predicting the probability of occurrence of 
an accident, by fitting data to a logit function. And Bayesian network (BN) is a method that has been 
developed to improve the understanding of the effects of different causes on the risk [Netjasov and Janic, 
2008]. In order to construct a BN, it is necessary to specify the relationships among variables and their 
conditional probability distributions. In this research, an innovative approach to integrate logistic regression 
and Bayesian Network together into risk assessment was presented. All the conditional probabilities and prior 
probabilities of the nodes of the BN are obtained through the application of a binary logistic regression. 
 
A case study about the maritime risk assessment has been carried out using the integrate of the logistic 
regression and the BN. Shipping has always been characterized as a relatively risky business (Li and Wonham, 
1999). Even with the development of modern ship building technology and the innovative navigation 
equipment, shipping accidents are still a major concern. The courses for shipping accidents are various and 
complex. Using BNs, marine accidents can be analyzed to identify the most important causes and to determine 
the relationships among these causes.  The logistic regression method and a database collected data from 
different sources were used to provide the prior probabilities for the BN' s nodes.  
 
The remainder of this paper is organized as follows. The following section reviews the recent relevant 
literature. Section 3 presents the methodology of integrate logistic regression and Bayesian Network together 
into risk assessment. A case study of the maritime risk analysis is used to illustrate the application of the 
proposed model in Section 4, followed by the conclusion in Section 5. 
 
2.          Literature review 
 
BN has been increasingly recognized as a powerful tool to support causal inference. Using a BN, the most 
important causes of an accident can be identified and, most of all, the relationship among these causes can be 
determined. The distinct features of a BN were summarized by Ren et al. (2008) as:  

Its ability to conduct inference inversely. 
Its ability to incorporate new observations in the network. 
Its inherent causal and probabilistic semantics which can be used to handle missing or incomplete data. 
It has both a causal and probabilistic semantics. 

 
Because of these advantages, BNs have been applied in many areas including risk assessment of building 
structures under fire (Gulvanessian, et al., 2001), manufacturing industry (Jones et al., 2009), workplace 
accidents (Martin, ea al., 2009) and business risk (Zhu and Deshmukh, 2003). In the maritime safety area, 
Eleye-Datubo et al. (2006) used BN to examine a typical ship evacuation in an accidental risk scenario. 
Trucco et al. (2008) developed a Bayesian Belief Network to model the maritime transport system by 
integrating human and organizational factors into risk analysis. The conditional probabilities for the BN have 
been estimated by means of expert judgment. Ren et al. (2008) assessed the offshore safety by combining 
Reason‟s “Swiss Cheese” model and BN. The prior probabilities were obtained by the domain experts‟ 
judgments. It has been found that BN modeling heavily relying on expert' s personal experiences may be error 
prone. Eleye-Datubo et al. (2008) examined the transfer of oil to an oil tanker. A BN model was created to 
examine system safety. In the research, given a certain event happening, it was possible to investigate other 
factors either influencing or influenced by the event in the overall risk analysis. 
 
In spite of BN remarkable power and advantage, there are some inherent limitations. A common criticism of 
the Bayesian approach is that it requires too much data in the form of prior probabilities, and that such data is 
often difficult, if not impossible, to obtain in risk assessment (Yang et al., 2008). The size of the conditional 
probability table (CPT) quickly becomes quite large when more child nodes are added, leading to complexity 
and difficulty in computation (Eleye-Datubo et al., 2006). 
 
Traditional and the most common way to estimate the probability of accidents is to contemplate accident 
frequency, which is regarded as the first type of studies that addressed safety level (Soares and Teixeira, 2001). 
However, the scarcity of accident statistics makes for limitations. Firstly, statistics describe the relationship 
between characteristics, and an accident doesn' t describe the degree of influence of the frequency determining 
factors. Secondly, specific criteria, assumptions and factors examined were applied in most statistical analyses, 
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and these may not be easily compared with other sources (Romer, et al., 1995). In addition, statistics describe 
only the past, which may not be useful in predicting the occurrence of a future accident (Gaarder et al, 1997). 
Historical performance of a safety system can often be measured readily, whereas prediction of future 
performance is typically difficult, especially as the facts show that maritime accidents are typically very rare 
events (Chang and Yeh, 2004; Hockaday and Chatziioanou, 1986). 
 
In practice, expert estimation is another common way in risk analyses with little or no relevant historical data. 
However, there are some typical problems associated with using the subjective probability, provided by expert, 
as a measure of uncertainty in risk analysis.  Firstly, experts are failure to consider all possibilities with 
respect to human error affecting technological systems (Slovic, et al., 1979). Secondly, experts are easy affect 
by operational experience (Skjong and Wentworth, 2001). Kahneman et al. (1982) discuss the numerous 
biases and heuristics that are introduced when humans process information and attempt to provide judgments. 
 
Logistic regression has proven to be a powerful modeling tool for predicting the probability of occurrence of 
an accident, by fitting data to a logit function. In recent years logistic regression has been suggested as an 
appropriate analytical technique to use for the multivariate modeling of categorical dependent variables 
(Uncles, 1987). There is some research in the maritime domain that has used a logistic regression model. 
Bergantino and Marlow (1998) used a logistic regression model to analyze the decision making process of 
vessel owners when adopting flags of registration. Jin et al. (2002, 2005) developed a fishing vessel accident 
probability model for fishing areas off the northeastern United States, using logistic regression along with 
their database. 
 
Given this background of BNs, the main aim of this paper is to investigate the effects of various risk factors 
and determine the relationships among them with the application of a binary logistic regression method to the 
collected data. The research methodology is developed in the following section.  
  
3.          Research methodology 
 
A BN is a probabilistic graphical model that represents a set of random variables and their conditional 
independencies in a directed acyclic graph (DAG). The DAG consists of a set of nodes representing variables 
and edges representing the probabilistic causal dependence among the variables.  
 
The causal dependence between variables is expressed by the structure of nodes, which gives the qualitative 
part of causal reasoning in a BN. The relationship between variables and the corresponding states are given in 
a CPT attached to each node, which constructs the quantitative part. 
 
3.1. Establish nodes with dependencies 
 
In order to construct a BN, the first step is to specify the graphical representation of the nodes (i.e. the 
structure). The structure may be defined using prior information, by means of an estimate made from the data 
or a combination of the two. The nodes with edges directed into them are called “child” nodes and the nodes 
with edges departing from them are called “parent” nodes. 
 
An influence diagram (ID) is a BN augmented with decision and utility nodes. ID is used for modeling 
decision processes and for computing utilities of available strategies. For making the best possible decisions, 
the utilities were associated with the state of ID. These utilities are represented by utility nodes. Each utility 
node has a utility function. Once the decisions are made, the probabilities of the configurations of the network 
are fixed. The expected utility of each decision can be computed. Based on the maximum expected utility 
principle, the highest expected utility can be chosen. 
 
3.2. Create CPT and prior probabilities for each node 
 
Having established the influencing nodes together with the dependencies, a CPT can be developed for each 
node or event. Theoretically, the CPT may be formulated using historical data, expert judgments or a 
combination of the two.  
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In this research, a binary logistic regression method is used to provide the conditional probability (P) of a ship 
involved in a casualty. The binary logistic regression model provides the necessary coefficient ( ) in order to 
compute the estimated probability of casualty given a certain combination of conditions (dependent variables 
X). 
 
In a binary regression, a latent variable 

iy  is mapped onto a binominal variable , where ),( 


iy . 

While 

iy  is unobservable, is observable: 

,0,accident 1 *
 ii yify  

.0,accident  no0 *
 ii yify

 
 
Consider a random m-dimensional variable . Each variable may be discrete having a finite or 
countable number of states, or continuous. 
 
Defining the latent variable as a function of X 

                                                                                                     (1) 
 
where β represents a column vector of unknown parameters (the coefficients) describing the magnitude of the 
contribution of each risk factor. u represents a (unobservable) stochastic component. 
 
This now gives: 

      (2) 
 
Function F can take different forms and for this study the logistic cumulative distribution function for F is 
chosen. The general model can therefore be written in the form 






 X

X

i i

i

e
ep





1                                                                                                 (3)  
 
Given a subset X of variables  if one can observe the state of every variable in X, the conditional probability 
can be calculated using Equation 3. 
 
3.3. Generate posterior probabilities 
 
A BN can be used to estimate how probabilities of each node are affected by both prior and posterior 
knowledge. Once the structure and parameters have been determined from the available data, the Bayesian 
network is ready to draw inferences. Using the following three equations the probabilities of interest can be 
calculated. 
 
The joint probability 
 

                                          (4)  
 
The marginalization rule 
 

                                                 (5) 
 
The Bayesian rule 
 

                                          (6) 
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3.4. Validation of the constructed model 
 
Validation is an important aspect of this methodology as it will provide a reasonable amount of confidence to 
the results produced. In this study a sensitivity analysis for validation of the model has been developed, the 
following two axioms must therefore be satisfied: 
 
Axiom 1. A slight increase/decrease in the prior subjective probabilities of each parent node should certainly 
result in the effect of a relative increase/decrease of the posterior probabilities of the child node. 
 
Axiom 2. The total influence magnitudes of the combination of the probability variations from x attributes 
(evidence) on the values should be always greater than the one from the set of x-y ( y  x) attributes (sub-
evidence). 
 
4.          Marine safety case study 
 
In this section, a case study is presented to demonstrate the above methodology for conducting marine safety 
assessment. 
 
4.1. Establish nodes with dependencies 
 
As indicated above, the first step is to establish the nodes with relevant dependencies. Judging from the 
previous research and analysis of casualty data, the nodes that have been established to indicate influencing 
factors to the marine accident include vessel age, size and the efforts of flag states and classification societies 
and shipowners. 
 
As aforementioned, vessel age, size, flag, classification society and vessel type have been identified as the 
major contributory factors to ship accidents. Although there are some other influencing factors, a careful 
analysis of historical accident data indicated that their effects on the probability of accident are completely 
trivial.  
 
The proposed framework, including all the factors which may contribute to the accident, is illustrated in 
Figure 1. 

 
Figure 1. The BN model of shipping accidents  
 
The BN consists of three types of nodes. The first type is the chance node. Classification society (CS), vessel 
type, vessel flag (Flag), age and size do not have any parents, because there are no arrows pointing towards 
them. The node of Accident is child node. The links between the nodes represent causal relationships between 
the nodes. An arrow means that the parent‟s node has an impact on the state of the child node. The rectangle 
represents a decision node (shipowner effort), making a standard effort or a substandard effort. The arrow 
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between the decision node and the accident node means that the decision has an impact on the occurrence 
probability of accident. 
 
Utility node (Cost), the third type node, is associates with the state of the decision node.  The utility node has 
a utility function enabling us to compute the expected utility of a decision. The node of cost represents the 
cost associated with the shipowner‟s effort; meanwhile it depends on the states of age and size. Another utility 
node, Loss, gathers information about the loss once the accident happens. Similarly, the magnitudes of the 
loss depend on the state of vessel age and size. 
 
4.2.  Create CPT and prior probabilities for each node 
 
The next step is to establish a CPT for each node. For this study, a total dataset with three sub-datasets has 
been built. The total dataset is a combination of accounting for approx 130,000 vessels, including information 
about 10,000 lost vessels and 120,000 existing vessels, counting more than 90% of worldwide commercial 
tonnage.   
 
The first sub-dataset containing the basic information (static data) of a vessel has been compiled from various 
sources, including the World Shipping Encyclopedia (WSE) (Lloyd‟s Fairplay, 2008). The static data 
describes each vessel, with over 200 variables such as identity (IMO) number, nationality, date of building, 
tonnage, etc. 
 
The second is a casualty dataset that comprises 8,023 records covering the time period from 1993 to 2008, and 
is a compilation of data in World Casualty Statistics by Lloyd's Register of Shipping (Lloyd‟s Fairplay, 1993-
2008) and the International Maritime Organization (IMO). World Casualty Statistics (Lloyd‟s Fairplay, 1993-
2008) consists of 2,552 casualty records for the time period of 1993 to 2008. The IMO website provides 6,876 
casualty records. The casualty dataset includes accident records of collisions, contacts, fires and explosions, 
founderings, hull/machinery damage, and miscellaneous wrecks/strandings/groundings.  
 
The third is an inspection dataset comprising 370,000 inspection cases in 59 countries for the time period 
January 1999 to December 2008. These countries are member States of three main Memoranda of 
Understanding (MoU) on Port State Control (PSC) under the coordination of the IMO, including the member 
states of China, Japan, India, France, the UK and Canada etc. 
 
The following equation shows the model used to estimate the occurrence probability of an accident. 

i
i

iii FSCSVTVSVAX   


 98

5

1
2210                       (7) 

 
where vessel age (VA) and vessel size (VS) are continuous variables. Vessel types (VT) include general cargo 
ship, bulker, container ship, tanker and passenger/ferry ship, which are dummy variables.   if it is a 
general cargo ship; otherwise . The classification society (CS) and flag state (FS) are also dummy 
variables. If the vessel is classed by a member of the International Association of Classification Societies 
(IACS), then , otherwise  . If the vessel‟s flag is open registry, then ; otherwise 

. i represents a (unobservable) stochastic component. 
 
The model can be processed using the data collected and the logistic regression procedure available within the 
SAS software. (SAS, 1990) 
  
Table 2 presents logic regression of vessel safety level for the model applications and partial effects of the 
coefficients and the significance level of the variables of interest. The results indicate that the model fits the 
data well. For example, for Model I (Table 2) the likelihood ratio statistic is 9766.4, which is well above the 
20.09 critical value for significance at the 0.01 level for 8 degrees of freedom. All the variables are highly 
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significant with p-values less than 0.01. The sign of an estimated logistic coefficient suggests either an 
increase or decrease in the occurrence probability of accident. 
 
Table 1.  Model Fit Summary 
variable  label of variable coefficient P-value 
VA Vessel age -0.03 0.000 
VS Vessel size ln (gt) 0.24 0.000 
VT1 General Cargo 1.11 0.000 
VT2 Bulker 0.33 0.000 
VT3 Container 0.33 0.000 
VT4 Tanker 0.07 0.006 
VT5 Pass./Ferry 0.72 0.000 
CS Classification Societies  -1.54 0.000 
FS Flag state 0.37 0.000 
Observation 127073 

 Number of accidents 6930 
 Number of nonaccidents 120143 
 Likelihood Ratio 9766.4   

 
Using the above result, when a vessel‟s characteristic data is available, the probability of the vessel being 
involved in an accident can be predicted using Equation (8). 






X

X

i
i

i

e
ep





1
ˆ

                                                                                       (8) 
 
In the binary regression,  contains independent variables such as age, size, flag, and classification society.  
represent the (unobservable) stochastic component, which including some subjective causes, such as 
shipowners‟ effort, crew training, and some objective causes, such as the safety equipment and ship structure. 
Those components are all associate with the ship safety condition. So in this research the  were used to 
separate all the ships as standard or substandard ship. 






X

X

iiii
i

i

e
eypy






1

ˆ
                                                       (9)  

 
where is observed result of one accident, accident(  or non-accident  ,  is the predicted 
probability of the vessel being involved in an accident. 

A positive i  means that the accident has happened, however the estimated probability of casualty is less than 
1. This means that this accident could have been avoided and this shipowner could have made a substandard 
effort or the other safety equipment not good enough. This type ships were defined as substandard ship. 

A negative i  means that the estimated probability of casualty is larger than 0, however the ship has not been 
involved in an accident. This indicates that this shipowner could have made a standard effort or the ship‟s 
safety condition is good, which decreases the probability of accident occurrence. This type ships were defined 
as standard ship. 
 
Certainly,   may include other information besides shipowners‟ effort, though it may be trivial. With the 
further development of the dynamic shipping database, more variables may be used to measure Ship safety 
condition more accurately. 
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In Equation (4), the VA and VS as continuous variables need to be transformed into dummy variables when 
being modeled in BNs. According to different ages, VA has been separated into 3 groups. For example, the 
average age of containership is 6.3.  3 groups based on their ages are defined as new (≤ 5years), medium (6-10 
years) and old (> 10 years). Similarly, VS has been separated into 2 groups based on the average ship size.  
The proportion of each group defined is used as the conditional probability of each node in the BN model. For 
example, 92.38% of containerships are classified by the IACS members while only 32.36% of passenger ships 
are classified by the IACS members. Table 2 lists the conditional probabilities of each node using the model. 
 
Table 2. The Conditional Probability of Each Node  

 % Container Dry 
Cargo Bulk Tanker Passenger 

CS 
Non-IACS (CS1) 7.62 59.53 21.94 31.82 67.64 
IACS (CS2) 92.38 40.47 78.06 68.18 32.36 

FS 
Closed Registered (FS1) 38.87 63.66 34.09 53.36 80.57 
Open Registered (FS2) 61.13 36.34 65.91 46.64 19.43 

VA 
New (VA1) 51.35 23.91 56.44 48.74 24.18 
Medium (VA2) 14.51 18.34 18.08 18.93 23.69 
Old (VA3) 34.14 57.75 25.48 32.33 52.13 

VS 
Lower Average (VS1) 47.33 48.64 37.91 52.88 62.85 
Over Average (VS2) 52.67 51.36 62.09 47.12 37.15 

 
When putting the coefficient  into Equation (5), it is possible to obtain the conditional probabilities of 
accident. The CPT is too large to show in one network due to the fact that there are 7 nodes in this model. 
Table 3 lists the containership‟s conditional probabilities of an accident under different conditions. Others 
conditional probabilities are shown in the appendix. 
 
Table 3. The Conditional Probability of an Accident under Different Conditions 

Shipowners’ 
efforts Stan 

Vessel size Lower 

Vessel age New Average Old 
Flag state Closed Open Closed Open Closed Open 

Classification 
society 

Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS 

Accident 0.08 0.05 0.33 0.06 0.05 0.04 0.19 0.05 0.05 0.03 0.07 0.04 

Non-accident 0.92 0.95 0.67 0.94 0.95 0.96 0.81 0.95 0.95 0.97 0.93 0.96 
Shipowners’ 

efforts Stan 

Vessel size Over 
Vessel age New Average Old 
Flag state Closed Open Closed Open Closed Open 

Classification 
society 

Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS 

Accident 0.20 0.07 0.18 0.08 0.31 0.05 0.43 0.07 0.35 0.04 0.09 0.04 

Non-accident 0.80 0.93 0.82 0.92 0.69 0.95 0.57 0.93 0.65 0.96 0.91 0.96 
Shipowners’ 

efforts SUB 

Vessel size Lower 

Vessel age New Average Old 

Flag state Closed Open Closed Open Closed Open 
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4.3. Maintenance cost and accident lost 
 
The repair and maintenance cost is a vital element for operations of any shipowner. Numerous factors affect 
both the amount and the time of repair and maintenance. Vessel age, steel price and even regional price 
differentials will affect the maintenance cost. A simple example is presented here to demonstrate the effect of 
the cost. Normally, the repair cost increase with vessel age. Approximate repair and maintenances cost was 
estimated by Drewry Shipping Consultants Ltd (Drewry annual report 2007/08). Although there may be 
significant variations around those estimates, this information shows some „rule of thumb‟ guidelines for the 
analysis. Such cost estimates are summarized in Table 4. 
 
Table 4. Estimated Approximate Repair and Maintenance Cost Based on the Age Variable 

Age(Years) Scheduled Repair Unscheduled Repair 
0-4 0.80  0.40  
5-9 1.00  1.00  

10-14 1.25  1.75  
15-20 1.60  2.00  
>20 2.00  1.35  

Note: the base cost level relates to ships of 5-9 years of age 
Source: Drewy 

 
If a shipowner makes the standard effort, both the scheduled and unscheduled repair and maintenance are 
done by the shipowner. If only scheduled repair is done by the shipowner, then a substandard effort is made. 
 
The data of maintenance cost was gathered from Drewry‟s publication „ship operating cost annual review and 
forecast 2007/08‟. The database includes the repair and maintenances cost of different types of vessels with 
different sizes for a period of 2001-2010. In Table 4, the estimated repair and maintenance costs are estimated 
under different conditions.  
 
Table 5. Estimated Approximate Repair and Maintenance under Different Conditions ($) 
Vessel size Lower 
Vessel age New Average Old 
Ship safety 
condition Stan SUB Stan SUB Stan SUB 

bulk -200175 -120105 -440385 -190166 -447057 -266900 
tankers -383775 -230265 -844305 -364586 -857097 -511700 
Container -168510 -101106 -370722 -160084 -376339 -224680 
Gen cargo -157650 -94590 -346830 -149767 -352085 -210200 

Classification 
society 

Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS 

Accident 0.12 0.21 0.30 0.19 0.15 0.19 0.20 0.19 0.13 0.09 0.19 0.18 

Non-accident 0.88 0.79 0.70 0.81 0.85 0.81 0.80 0.81 0.87 0.91 0.81 0.82 
Shipowners’ 

efforts SUB 

Vessel size Over 

Vessel age New Average Old 

Flag state Closed Open Closed Open Closed Open 
Classification 

society 
Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS Non 

IACS IACS Non 
IACS IACS 

Accident 0.34 0.22 0.52 0.22 0.20 0.20 0.21 0.32 0.37 0.12 0.40 0.17 

Non-accident 0.66 0.78 0.48 0.78 0.80 0.80 0.79 0.68 0.63 0.88 0.60 0.83 
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Vessel size Over 
Vessel age New Average Old 
Ship safety 
condition Stan SUB Stan SUB Stan SUB 

bulk -319650 -191790 -703230 -303667 -713885 -426200 
tankers -580650 -348390 -1277430 -551617 -1296785 -774200 
Container -208200 -124920 -458040 -197790 -464980 -277600 
Gen cargo -184650 -110790 -406230 -175417 -412385 -246200 

 
In terms of cost, the loss of different ships under different situations may be various. An example in Table 6 is 
used to show the levels of losses for ships with different ages and sizes. 
 
Table 6. Estimated Losses due to Accidents under Different Conditions ($M) 
Vessel age New Average Old 
Vessel size Lower Over Lower Over Lower Over 
bulk -31 -67 -28 -53 -11 -20 
tankers -14 -80 -9 -40 -7.6 -15 
Container -30 -104 -22 -75 -10 -38 
Gen cargo -10 -20 -3 -5.6 -2 -4.4 

 
Having established the CPT for each node and the utility table for each configuration of decision alternative 
and outcome state for the determining variable, normalization is required, which means the probability values 
should be non-zero and a combined value for each CPT of 1. Inputting the probability data and the utility data 
into the Hugin software (Hugin, 2008), normalization has been carried out automatically by this software. A 
prior probability of accident can get too. With regard to the containership, taking into account all of the prior 
probabilities, the probability of accident is estimated to 23.69%.  This is illustrated in Figure 2. 
 

 
Figure 2: Prior probability of containerships’ accidents  
 
The capacity for drawing inference is the great advantage of the BN statistical tool. BN is useful for 
estimating, in probabilistic terms, changes in one or more variables in response to the introduction of new 
evidence. Sensitivity refers to how sensitive a model's performance is to minor changes in the input 
parameters. Sensitivity analysis is particularly useful in investigating the effects of inaccuracies or 
incompleteness in the parameters of a BN model on the model's output. The most natural way of performing 
sensitivity analysis is to change the parameters' values and then, using an evidence propagation method, to 
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monitor the effects of these changes on the posterior probabilities. Thus one of the most important sensitivity 
analysis aspects is to analyze how they change when prior probabilities take different values.   
 
4.4. The effect of different factors 
 
4.4.1 The effect of ship safety condition 
 
Ship safety condition has an important effect on the occurrence probability of accident. Having locked all the 
other nodes, meaning that those parameters will not change, a useful scenario that can be run in this model is 
to simulate the standard or substandard ships. Figure 3 illustrates the containership owner‟s effect. 
 
From the scenario, if a ship is a standard ship (100% standard nodes), it can be observed that the accident 
probability will decrease to 17.95% in Figure 4. If, on the other hand, ship is a substandard (100% substandard 
node), it can be observed that the accident probability will increase to 29.44%. The expected loss of the 
standard ship have an accident is 1.02M $ and the cost of maintain a standard ship is $300,000$, the expected 
overall cost of the shipowner is 1.05M$. However, about the  substandard ship, the expected loss of the 
accident is 1.82M$ and the cost the standard effort $170,690. The expected overall cost of the shipowner is 
1.84M$, which is a significant increase compared to the above figure of 1.05M$. We can conclude that 
although the maintenance cost is higher to keep a standard ship, but the expected overall cost is lower than the 
substandard ship. 
 

 
 
Figure 3. Ship owner’s effect on the probability of accident (container ship) 
 
The sensitivity analysis with respect to the give vessel types are shown in Table 7. As can be seen in the last 
column of Table 7, the changes of the posterior probabilities are evident in the accident occurrence probability 
when ship safety condition changes from standard to sub-standard. The average change for the give vessel 
types is 112.82%.  The largest change among them is bulk carriers (163.52%), and then is the tankers 
(142.07%). The least effected by ship safety condition is containerships (64.01%).  
 
Table 7. The Effect of ship safety condition 

Type 
Prior 
probabilities 

Posterior probabilities Changes of 
posterior 
probabilities (%) Standard effort Sub-standard effort 

Container 23.69 17.95 29.44 64.01 
Dry Cargo 13.41 8.82 18.00 104.08 
Bulk 12.91 7.10 18.71 163.52 
Tanker 8.74 5.11 12.37 142.07 
Passenger 9.25 6.37 12.13 90.42 
    Average change (%) 112.82 

 
4.4.2 The effect of classification society 
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Figure 4 illustrates the effect of the IACS members on the occurrence probability of accidents (containerships). 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Ship classification societies’ effects on the probability of accidents (containerships) 
 
From Figure 4, if a ship is classified by a member of the IACS (100% IACS), the accident probability will 
decrease to 12.30%. If, on the other hand, a ship is classified by a non-IACS member (100% non-IACS), the 
accident probability will increase to 24.63%. 
 
The sensitivity analysis results of the five vessel types are shown in Table 8. As seen in the last column of 
Table 8, the changes of the posterior probabilities are evident when the ship‟s classification society changes 
from an IACS member to a Non-IACS member. . The average change of the five vessel types is 103.95%.  
The largest change among them is passenger ships (129.61%), and then is the bulk carriers (113.65%). The 
least affected by the classification societies is dry cargo ships (64.01%). 
 
Table 8. The effect of Classification Society 

Type Prior probabilities 

Posterior probabilities Change between 
posterior 
probabilities (%) IACS NON-IACS 

CONTAINER 23.69 12.3 24.63 100.24 
DRY 
CARGO 13.41 9.17 16.3 77.75 
BULK 12.91 10.33 22.07 113.65 
TANKER 8.74 6.65 13.2 98.50 
PASSENGER 9.25 4.93 11.32 129.61 
    Average change (%) 103.95 

 
4.4.3 The Effect of Flag State 
 
The vessel registered in a FOC country probably has greater intention of slackening off its safety management, 
which may result in a higher accident possibility. 

 

 
 
Figure 5. The effect of Vessel’s Flag State (containership) 

348



From Figure 5, if a ship is registered a closed registry (100% FS1 variables), the accident probability will 
decrease to 19.56%. If, on the other hand, the ship is registered an open registry (100% FS2 variables), the 
accident probability will increase to 26.32%. 
 
The sensitivity analysis results of the five vessel types are shown in Table 9. As seen in the last column of 
Table 9, there are clear changes of the posterior probabilities clearly when the ship‟s registration changes from 
an open registry to a closed one. . The average change of the five vessel types is 22.66%. The largest change 
among them is containerships (34.56%), and then is the dry cargo ships (29.64%). The least affected by flag 
states is passenger ships (6.79%). 
 
Table 9. The effect of Flag State 

Type Prior probabilities 

Posterior probabilities Change between 
posterior 
probabilities (%) CLOSED OPEN 

Container 23.69 19.56 26.32 34.56 
Dry Cargo 13.41 12.11 15.7 29.64 
Bulk 12.91 10.81 13.99 29.42 
Tanker 8.74 8.21 9.27 12.91 
Passenger 9.25 9.13 9.75 6.79 
    Average change (%) 22.66 

 
4.4.4. The effect of vessel size 
 
When the vessel‟s size increases, its maneuverability at sea may be reduced, leading to a higher chance of 
being involved into an accident. 
 

 
 

Figure 6: The effect of Vessel’s Size (container ship) 
 
From Figure 6, if a ship has a large size, the accident probability increases to 29.41%. If, on the other hand, 
the ship has a small size, the accident probability decreases to 17.33%. 
 
The sensitivity analysis results of the five vessel types are shown in Table 10. As  seen in the last column of 
Table 10, there are changes for the posterior probabilities a large ship is changed to a small ship. The average 
change of the five vessel types is 78.45%. The largest change among them is tankers (157.17%), followed by 
passenger ships (83.57%). The least effected by vessel size is bulk carrier (27.06%). 
 
Table 10. The effect of Vessel Size 

Type Prior probabilities 

Posterior probabilities Change between 
posterior probabilities 
(%) VS1 VS2 

container 23.69 17.33 29.41 69.71 
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dry cargo 13.41 10.47 16.2 54.73 
bulk 12.91 11.05 14.04 27.06 
tanker 8.74 5.02 12.91 157.17 
passenger 9.25 7.06 12.96 83.57 
    Average change (%) 78.45 

 
4.4.5 The effect of vessel age 
 
The results of this model suggest that an increase in vessel age contributes to a decrease in the probability of 
accident. From Figure 7, it can be observed that the accident probabilities of new, medium and old vessels will 
be 26.61%, 22.34% and 19.89%, respectively. 
 

 
 

 
 
Figure 7. The effect of Vessel’s Age (containerships) 
 
The sensitivity analysis results of the five vessel types are shown in Table 11. The changes of the posterior 
probabilities are clearly shown when a new ship is changed to an old ship. The average change of the five 
vessel types is 34.77%.  The largest change among them is passenger ships (49.37%), and then is the dry 
cargo ships (38.08%). The least affected by the vessel age factor is containerships (5.25%). 
 
Table 11. The effect of Vessel Age 

Type Prior probabilities 
Posterior probabilities 
VA1 VA2 VA3 

container 23.69 26.61 22.34 19.89 
dry cargo 13.41 18.12 14.17 11.22 
bulk 12.91 14.48 12.95 9.39 
tanker 8.74 9.61 9.28 7.11 
passenger 9.25 12.68 11.96 6.42 

 
4.4.6 The effect of vessel type 
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Vessel type determines the vessel‟s function in seaborne transportation, and principally affects the possibility 
of a certain vessel potentially suffering a particular type of marine peril.  
 
Table12. The effect of Vessel Type 

Type 
Prior 
probabilities 

container 23.69 
dry cargo 13.41 
bulk 12.91 
tanker 8.74 
passenger 9.25 

 
Table 12 reveals that occurrence probabilities of accidents vary among different vessel type groups. 
Containership has the largest accident probability, followed by dry cargo ship. Containership is the most liable 
ship type in terms of accident occurrence, followed by general cargo. Tanker has the smallest accident 
probability. 
 
4.5. Discussion of the obtained results and validation of model 
 
From Tables 7-11, it can be concluded that shipowers‟ effort is the largest single influencing factor on ship 
accident occurrence. The average change between posterior probabilities is 112.82% if the shipower made a 
sub-standard effort compare with the standard effort. Followed factor is classification society. The average 
change between posterior probabilities is 103.95%. Clearly for different ship types, such influencing factors 
have different levels of impacts on possible accident occurrence. The age of a ship does not really influence 
the level of accident occurrence probability as much as the other four factors above do. Actually the accident 
occurrence probability of a ship decreases slightly with the age of the vessel. This may appear to be arguable 
at first glance. However, this finding is reasonable in a sense that as times goes more experience and 
knowledge can be obtained by the operators to manage the ship, thus reducing possible accident occurrence. 
 
Model validation is possibly the most important step in the model building process. It provides confidence to 
the results of the model. The two axioms described in Section 3.3 must be satisfied. 
 
Table 13.  Sensitivity Analysis  

Type 
Prior 
probabilities 

Sub standard 
effort Non-IACS 

Open 
registered Over size New ship 

  P(A=A1) 
P(A=A1|SE
=SE2) 

P(A=A1|S
E=SE2, 
CS=CS2) 

P(A=A1|S
E=SE2, 
CS=CS2,F
S=FS1) 

P(A=A1|SE
=SE2, 
CS=CS2,FS
=FS1,VS=V
S2) 

P(A=A1|S
E=SE2, 
CS=CS2,F
S=FS1,VS
=VS2,VA=
VA1) 

Container 23.69 29.44 30.28 34.63 43.76 52.41 
Dry Cargo 13.41 18 21.22 24.77 30.16 41.33 
Bulk 12.91 18.71 29.59 31.02 35.33 39 
Tanker 8.74 12.37 17.1 18.59 28.56 35.98 
Passenger 9.25 12.13 14.67 14.9 18.67 27.17 

 
Examination of the model, illustrated in Table 13, reveals that when the ship safety condition is set at 100% 
substandard, the accident probability increases from 23.69% to 29.44% for a containership. The third column 
in Table 13 illustrates that when SE=SE2 (i.e. 100% sub-standard) and CS=CS2 (i.e. 100% non-IACA 
member) are given, the accident probability is larger than the one when SE=SE2 is given. This analysis 
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process continues and consequently, the values in the last column are larger than any value presented in the 
same row in Table 13. This is in harmony with Axiom 2 in Section 3.4, thus validating the model.  
 
5.          Conclusions 
 
This paper presents an approach to integrate logistic regression and Bayesian Network together into risk 
assessment, which has been developed and applied to a case study in the maritime industry. Bayesian 
networks as a modeling tool in maritime applications have recently been demonstrated widely. However, 
Bayesian approach requires too much prior probabilities information, which is often difficult to obtain in risk 
assessment. Expert estimation, the traditional way to estimate the prior probability of accidents, must be used 
with care.  
 
In this research, a binary logistic regression method is used to provide input for a BN, making use of different 
resources of data in maritime accidents. By taking into account different actors (i.e. age, size, etc.) and their 
mutual influences, maritime risk assessment using the BN enables to identify the factors that have the greatest 
impact on the accident occurrence. In the case study, we conclude that although the maintenance cost is higher 
to keep a standard ship, but the expected overall cost is lower than the substandard ship. IACS members 
enforce strict regulations to improve the safety level of their vessels. It can be concluded that vessels‟ 
classification by the IACS or non-IACS members affects the accident probability, especially for the passenger 
ship. There is a significant change of accident probability when vessels use open or closed registration.  In 
terms of contributions to vessel accident occurrence probability, there is a significant difference between large 
and small ships, especially in the tanker section. The results of this model also suggest that an increase in 
vessel age associates with a decrease in the probability of accident.  
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